МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Саровский физико-технический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(САРФТИ НИЯУ МИФИ)

УТВЕРЖДАЮ

Зам. руководителя СарФТИ НИЯУ

МИФИ, к.э.н , доцент

Т.Г. Соловьев

«11» августа/2025 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Теория алгоритмов

Специальность: 09.02.07 Информационные системы и программирование

Наименование образовательной программы: Информационные системы и программирование

Уровень образования: среднее профессиональное образование

Форма обучения: очная

Паспорт фонда оценочных средств

Специальность:

09.02.07 Информационные системы и программирование

Учебная дисциплина: Теория алгоритмов

Требования ФГОС СПО к результатам освоения дисциплины

В результате освоения учебной дисциплины обучающийся должен обладать следующими компетенциями:

ОК 09. Использовать информационные технологии в профессиональной деятельности.

Техник по компьютерным системам должен обладать профессиональными компетенциями, включающими в себя способность:

- ПК 1.1. Формировать алгоритмы разработки программных модулей в соответствии с техническим заданием.
- ПК 1.2. Разрабатывать программные модули в соответствии с техническим заданием.
- ПК 2.1. Разрабатывать требования к программным модулям на основе анализа проектной и технической документации на предмет взаимодействия компонент.
- ПК 2.3. Выполнять отладку программного модуля с использованием специализированных программных средств.

В результате освоения учебной дисциплины обучающийся должен уметь:

- разрабатывать алгоритмы для поставленных задач
- определять структуру и уровень сложности алгоритма

В результате освоения учебной дисциплины обучающийся должен знать:

- основные модели алгоритмов
- методику построения алгоритмических цепей
- методы вычисления сложности алгоритмов

1. Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория алгоритмов».

ФОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации.

ФОС разработан на основании положений: основной профессиональной образовательной программы, рабочей программы учебной дисциплины «Теория алгоритмов» по направлению подготовки специальностей СПО 09.02.07 Информационные системы и программирование.

2. Результаты освоения дисциплины, подлежащие проверке.

Раздел/тема Введение в теорию	Краткое тематическое содержание /этапы формирования компетенции Возникновение математической теории	Методы текущего контроля успеваемост	Компетенции ОК 09
алгоритмов.	алгоритмов. Парадоксы теории множеств. Основная проблема теории алгоритмов. Массовые проблемы. Экстраалгоритм и неразрешимые проблемы. Самоприменимость. Теорема Геделя. Разрешимость аксиоматических теорий.		ПК 1.1 ПК 1.2 ПК 2.1 ПК 2.3
Основы алгоритмизации	Интуитивное понятие алгоритма и его свойства. Способы представления алгоритмов. Классификации алгоритмов. Основные методы разработки алгоритмов и алгоритмических структур. Рекурсия в алгоритмизации. Языки программирования. Запись алгоритмов с помощью языка блок-схем. Основные	0	ОК 09 ПК 1.1 ПК 1.2 ПК 2.1 ПК 2.3
Виртуальные алгоритмические машины	Понятие о методах представления алгоритмов и их роль в теории алгоритмов. Виртуальные алгоритмические машины. Определение машины Тьюринга (МТ). Описание МТ. Работа МТ. Правило останова. Программа МТ. Тезис Тьюринга. Примеры программирования МТ. Машина Поста. Особенности машины Поста.	OP	ОК 09 ПК 1.1 ПК 1.2 ПК 2.1 ПК 2.3
Алгорифмы Маркова и вычислимые функции	Представление алгоритмов с помощью алгорифмов Маркова. Марковская подстановка. Этапы решения задач. Порядок действия алгорифма Маркова. Примеры алгорифмов Маркова. Представление алгоритмов с помощью вычислимых функций. Вычислимые функции. Разрешимые и перечислимые	O	ОК 09 ПК 1.1 ПК 1.2 ПК 2.1 ПК 2.3
Основы теории формальных языков и грамматик	Естественные и формальные языки. Формальный язык, алфавит, буква, слово. Символьные цепочки и их свойства. Способы задания языков. Понятие грамматики языка. Форма Бэкуса Наура и ее использование. Примеры. Рекурсивность в правилах грамматики. Методы описания грамматик.	O	ОК 09 ПК 1.1 ПК 1.2 ПК 2.1 ПК 2.3

Знает базовые положения фундаментальных разделов системного анализа и математики в объеме, необходимом для обработки информации и анализа данных в прикладной области; принципы и методы проведения исследований в области информационных систем и технологий; техники планирования и проведения вычислительного эксперимента	Студент продемонс трировал отсутствие знаний.	Студент демонстрирует небольшое понимание заданий. У студента нет ответа.	Студент демонстриру ет частичное понимание заданий. Большинств о требований, предъявляем ы х к заданию выполнены.	Студент демонстрирует значительное знание заданий. Все требования, предъявляемые к заданию выполнены.	Студент демонстрирует полное знание заданий. Все требования, предъявляемые к заданию выполнены.
Умеет формулировать и доказывать наиболее важные результаты в прикладных областях; применять численные методы для решения прикладных задач; программно реализовать вычислительный эксперимент посредством языков программирования или с использованием специализированных пакетов прикладных программ; разрабатывать алгоритмы решения	Студент продемонст рировал отсутствие умений.	Студент демонстрирует неумения выполнять задания.	Студент демонстриру ет частичное умение выполнений заданий. Большинств о требований, предъявляем ы х к заданию выполнены.	Студент демонстрирует значительное знание заданий. Все требования, предъявляемые к заданию выполнены.	Студент демонстрирует полное умение выполнений заданий. Все требования, предъявляемые к заданию выполнены.
Владеет навыками постановки задачи; навыками работы с библиографическими источниками информации; навыками решения поставленных задач в предметной области в рамках выбранного	Проявляет ся полное или практичес ки полное отсутствие навыков.	У студента не сформированы дисциплинарные компетенции, проявляется недостаточность навыков.	В целом успешное, но не систематиче ское применение навыков	В целом успешное, но содержащее отдельные пробелы применение навыков	Успешное и систематическое применение навыков

3. Распределение оценивания результатов обучения по видам контроля. Входной контроль

- 3.1. В ходе реализации дисциплины «Теория алгоритмов» используются следующие формы текущего контроля успеваемости обучающихся: опрос, реферат, эссе, контрольная работа и т.д.
- 3.2. Преподаватель при текущем контроле успеваемости, оценивает уровень подготовленности обучающихся к занятию по следующим показателям:
- устные (письменные)ответы на вопросы преподавателя по теме занятия;

- по сформированности собственных суждений, основанных на значимых фактах и практических результатах, отраженных в реферате, эссе; аргументированности, актуальности, новизне содержания доклада;

Детализация баллов и критерии оценки текущего контроля успеваемости утверждается на заседании кафедры.

- **3.2.1.** Вопросы для подготовки к опросу по всем изучаемым тема дисциплины:
- 1. Вычисления суммы конечного и бесконечного рядов 1/n2. произведение ряда 1/n3
- 2. Вводится массив А (10,10). Определить и вывести максимальное значение в каждой строке.
- 3. Вводится массив В (12,12). Определить и вывести минимальное значение в каждом столбце.
- 4. Вводится массив А (15,15). Определить и вывести сумму значений в каждой строке. Произведение отрицательных значений в каждом столбце
- 5. Вводится массив С (14,14). Определить и вывести минимальное положительное значение в каждой строке. максимальное отрицательное значение в каждом столбце
- 6. Вводится массив С (14). Вывести значения массива в порядке возрастания методом пузырька. метод выбора.
- 7. Программы вычисления квадратного уравнения с помощью подпрограмм, используя рекурсивный метод.
- 8. Программы решения задачи о «Ханойских башнях» с помощью рекурсии. д
 - 9. Построить программу машины Тьюринга
 - 10. Прибавления к четверичному числу двойки X+2 X+3
 - 11. Вычитания из двоичного числа двойки X-2 X-3
 - 12. Вычитания из троичного числа двойки X-2 X-3
 - 13. Дан прямой код числа, построить обратный код дополнительный
 - 14. Построить алгорифм Маркова
 - 15. Дан прямой код числа, построить обратный код
 - 16. Дано 16-е число, построить двоичный код восьмеричный
- 17. Дано 8-е число, построить прибавление 1 к числу вычитание 1 из числа
- 18. Дано 4-е число, построить вычитание 3 из числа прибавление 3 к числу
 - 19. Построить нотации Бекуса-Наура
 - 20. Построить нотацию натуральных и целых чисел рациональные
 - 21. Построить нотацию действительных чисел комплексных

- 22. Построить нотацию идентификатора переменной заголовок процедуры
- 23. Построить нотацию для определения номера автомобиля почтового адреса
 - 24. Построить нотацию для определения четных чисел делящихся на 5

Устный (письменный) опрос проводится в течение установленного времени преподавателем. Опрашиваются все обучающиеся группы. За опрос выставляется оценка до 10 баллов. Набранные баллы являются рейтинг-баллами.

При оценивании учитывается:

- 1. Целостность, правильность и полнота ответов
- 2. В ответе приводятся примеры из практики, даты, Ф.И.О. авторов
- 3. Применяются профессиональные термины и определения Процедура оценки опроса:
- 1. Если ответ удовлетворяет 3-м условиям 8-10 баллов.
- 2. Если ответ удовлетворяет 2-м условиям 6-7 баллов.
- 3. Если ответ удовлетворяет 1-муусловию 4-5 баллов.
- 4. Если ответ не удовлетворяет ни одному условию -0-3

Рейтинг-	Аттестационная оценка обучающегося по дисциплине
баллы	учебного плана в национальной системе оценивания
8-10	отлично
6-7	хорошо
4-5	удовлетворительно
0-3	неудовлетворительно

з.2.2. Темы рефератов:

Реферат — форма научно-исследовательской деятельности, направленная на развитие научного мышления, на формирование познавательной деятельности по дисциплине через комплекс взаимосвязанных методов исследования, на самообразование и творческую деятельность. Используя ЭИОС ММА, включающей в себя электронные информационные ресурсы, электронные образовательные ресурсы, базы данных, ЭБС, выделять значимые и актуальные положения, противоположные мнения с обоснованием собственной точки зрения.

Общий список тем рефератов

- 1. Основная задача теории алгоритмов. Методы исследования алгоритмов.
- 2. Понятие алгоритма. Принцип потенциальной осуществимости. Основные свойства алгоритмов. Понятие исполнителя алгоритмов.

- 3. Классификация алгоритмов. Блок-схемы описания алгоритмов. Формы записи алгоритмов.
- 4. Сложность алгоритмов. Варианты оценки сложности. Асимптотическая сложность алгоритма.
- 5. Реально выполнимые алгоритмы. Совпадение классов полиномиальных и реально выполнимых алгоритмов.
- 6. Полиномиальные и не полиномиальные алгоритмы. Примеры полиномиальных алгоритмов.
- 7. Примеры задач НП. Задача коммивояжера. Замкнутость класса задач НП.
 - 8. Алгоритмизация и программирование.
- 9. Методы и средства программирования. Классификация языков программирования.
 - 10. Методы построения эффективных алгоритмов.
 - 11. Формальные языки и их грамматика.
 - 12. Классификация формальных языков по Хомскому.
 - 13. Машина Тьюринга. Работа Машины Тьюринга.
 - 14. Машина Тьюринга. Программа Машины Тьюринга.
 - 15. Машина Тьюринга. Программирование задач. Примеры.
 - 16. Машина Поста. Особенности машины Поста.
- 17. Алгорифмы Маркова. Принцип нормализации. Программирование задач. Примеры.
 - 18. Нотации Бекуса-Наура. Построение нотаций. Примеры.
- 19. Понятие вычислимой и рекурсивной функции. Базовые рекурсивные функции.
 - 20. Общерекурсивные функции.
- 21. Тезисы Черча и Клини. Частично-рекурсивные функции. Операция минимизации.
- 22. Основная задача теории алгоритмов. Понятие неразрешимой задачи. Экстраалгоритм.

Критерии оценки:

- 1. Выполнение задания в срок. Сформулированы предмет анализа или исходные тезисы.
- 2. Отражены суждения и оценки, основанные на значимых фактах и практических результатах.
- 3. Использованы электронные информационные ресурсы, базы данных, ЭБС

Процедура оценки реферата, эссе:

1. Если ответ удовлетворяет 3-м условиям -18-20 баллов.

- 2. Если ответ удовлетворяет 2-м условиям 15-17 баллов.
- **3.** Если ответ удовлетворяет 1-му условию 10-14 баллов.
- **4.** Если ответ не удовлетворяет ни одному условию -1-9

Рейтинг- баллы	Аттестационная оценка обучающегося по
	дисциплине учебного плана в национальной системе
18-20	Отлично
15-17	Хорошо
10-14	Удовлетворительно
1-9	Неудовлетворительно

5. Форма и средства (методы) проведения промежуточной аттестации

5.1.Промежуточный контроль: зачет (рейтинговая система)

Зачет проводится в устной форме. Время, отведенное на подготовку вопросов зачета, составляет 15 мин. По рейтинговой системе оценки, формы контроля оцениваются отдельно. Зачёт составляет от 0 до 20 баллов. Допуск к зачету составляет 45 баллов.

Типовые оценочные средства.

Примерный перечень вопросов к зачету:

- 1. Возникновение математической теории алгоритмов.
- 2. Парадоксы теории множеств. Основная проблема теории алгоритмов.
- 3. Массовые проблемы.
- 4. Экстраалгоритм и неразрешимые проблемы.
- 5. Самоприменимость. Теорема Геделя.
- 6. Разрешимость аксиоматических теорий.
- 7. Интуитивное понятие алгоритма и его свойства.
- 8. Способы представления алгоритмов.
- 9. Классификации алгоритмов.
- 10. Основные методы разработки алгоритмов и алгоритмических структур.
 - 11. Рекурсия в алгоритмизации. /зыки программирования.
 - 12. Запись алгоритмов с помощью языка блок-схем.
 - 13. Основные алгоритмические структуры.
 - 14. Примеры записи алгоритма с помощью языка блок-схем.
 - 15. Итерационные и циклические алгоритмы.
- 16. Подпрограммы. Методы повышения эффективности алгоритмов. Сложность алгоритма.
- 17. Асимптотическая оценка сложности алгоритмов. Классы сложности алгоритмов. Класс полиномиальных алгоритмов. Примеры.

- 18. Класс NP алгоритмов. Примеры. Замкнутость класса NP алгоритмов
- 19. Понятие о методах представления алгоритмов и их роль в теории алгоритмов.
 - 20. Виртуальные алгоритмические машины.
- 21. Определение машины Тьюринга (МТ). Описание МТ. Работа МТ. Правило останова.
 - 22. Программа МТ. Тезис Тьюринга. Примеры программирования МТ.
 - 23. Машина Поста. Особенности машины Поста.
 - 24. Сравнение виртуальных алгоритмических машин
 - 25. Представление алгоритмов с помощью алгорифмов Маркова.
 - 26. Марковская подстановка. Этапы решения задач.
- 27. Порядок действия алгорифма Маркова. Примеры алгорифмов Маркова.
 - 28. Представление алгоритмов с помощью вычислимых функций.
 - 29. Вычислимые функции. Разрешимые и перечислимые множества.
 - 30. Подходы к определению класса вычислимых функций.
 - 31. Рекурсивные функции. Базовые рекурсивные функции.
 - 32. Операторы суперпозиции и примитивной рекурсии.
 - 33. Определение рекурсивных функций по Черчу.
- 34. Общерекурсивные функции. Оператор построения по первому нулю (оператор минимизации).
 - 35. Правило минимизации. Тезисы Черча и Клини. П
- 36. Примеры построения рекурсивных функций. Эквивалентность описанных теорий
 - 37. Естественные и формальные языки.
 - 38. Формальный язык, алфавит, буква, слово.
 - 39. Символьные цепочки и их свойства. Способы задания языков.
- 40. Понятие грамматики языка. Форма Бэкуса Наура и ее использование. Примеры.
 - 41. Рекурсивность в правилах грамматики.
 - 42. Методы описания грамматик. Классификация языков по Хомскому.

Критерии оценки:

Оценка « **Отлично**» выставляется студенту, если он глубоко, осмысленно, в полном объеме усвоил программный материал, излагает его на высоком уровне, изучил обязательную и дополнительную литературу, умело использует ее при ответах; знает определения философских понятий, даты,

может устанавливать причинно-следственные связи между ними. Умеет творчески применять теоретические знания.

Оценка «Хорошо» выставляется студенту, если он полно раскрывает содержание учебного материала в объёме, предусмотренном программой, изучил обязательную литературу; знает определения философских понятий, даты, может устанавливать причинно-следственные связи между ними. Умеет творчески применять теоретические знания. Допустил незначительные неточности при изложении материала, не искажающие содержания ответа по существу вопроса.

Оценка «удовлетворительно» выставляется студенту, который: знает основные определения философских понятий, даты. Умеет творчески применять теоретические знания.

Оценка «неудовлетворительно» выставляется студенту, который: имеет пробелы в знаниях основного учебного материала, не может дать четкого определения основных понятий и категорий.

Условия выполнения заданий:

Время выполнения задания мин./час. -30 мин.

Оборудование: бумага, ручка.