МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Саровский физико-технический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(САРФТИ НИЯУ МИФИ)

УТВЕРЖДАЮ

Зам. руководителя СарФТИ НИЯУ

МИФИ, к.э.н., домент

Т.Г. Соловьев

«11» августа 2025 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Численные методы

Специальность: 09.02.07 Информационные системы и программирование

Наименование образовательной программы: Информационные системы и программирование

Уровень образования: среднее профессиональное образование

Форма обучения: очная

Паспорт фонда оценочных средств

Специальность: 09.02.07 Информационные системы и программирование

Учебная дисциплина: Численные методы

Требования ФГОС СПО к результатам освоения дисциплины

Обладать следующими компетенциями:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.3. Выполнять отладку программных модулей с использованием специализированных программных средств
 - ПК 1.4. Выполнять тестирование программных модулей
 - ПК 1.5. Осуществлять рефакторинг и оптимизацию программного кода
- ПК 1.6. Разрабатывать модули программного обеспечения для мобильных платформ
- ПК 2.4. Осуществлять разработку тестовых наборов и тестовых сценариев для программного обеспечения
 - ПК 11.2. Проектировать базу данных на основе анализа предметной области **В результате освоения учебной дисциплины обучающийся должен уметь:**
 - использовать основные численные методы решения математических задач;
 - выбирать оптимальный численный метод для решения поставленной задачи;
 - давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;
 - разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.

В результате освоения учебной дисциплины обучающийся должен знать:

- методы хранения чисел в памяти электронно-вычислительной машины (далее – ЭВМ) и действия над ними, оценку точности вычислений;
- методы решения основных математических задач интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.

1. Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Численные методы».

ФОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме экзамена.

ФОС разработан на основании положений:

- программы подготовки специалистов среднего звена по направлению подготовки специальности СПО 09.02.07 Информационные системы и программирование;
 - рабочей программы учебной дисциплины «Численные методы».

2. Результаты освоения дисциплины, подлежащие проверке

Результаты освоения	Основные показатели оценки результата и их	
(объекты оценивания)	критерии	
Уметь:		
- использовать основ-	 находить погрешность результата числен- 	
ные численные методы ре-	ного решения задачи	
шения математических за-	- вычислять погрешности результатов ариф-	
дач;	метических действий	
– выбирать оптималь-	 применять численный метод половинного 	
ный численный метод для	деления при решении алгебраических и трансцен-	
решения поставленной за-	дентных уравнений	
дачи;	 применять численный метод итераций при 	
– давать математиче-	решении алгебраических и трансцендентных	
ские характеристики точ-	уравнений	
ности исходной информа-	 применять численные методы хорд и каса- 	
ции и оценивать точность	тельных при решении алгебраических и трансцен-	
полученного численного	дентных уравнений	
решения;	 применять численный метод Гаусса при ре- 	
 разрабатывать алго- ритмы и программы для ре- 	шении систем линейных алгебраических уравне-	
шения вычислительных за-	ний	
дач, учитывая необходи-	– применять численный метод Зейделя при	
мую точность получаемого	решении систем линейных алгебраических уравнений	
результата.		
r - y - z - z - z - z - z - z - z - z - z	 понятие интерполяции и экстраполяции 	
	 вычислять полином в форме Лагранжа 	
	- строить интерполяционный полином Нью-	
	тона	
	– применять формулы Ньютона – Котеса для	
	вычисления определённого интеграла	
	 применять метод Эйлера для численного решения дифференциальных уравнений 	
	– применять метода Рунге – Кутта для чис-	
	ленного решения дифференциальных уравнений	
	 применять ЭВМ при решений задач числен- 	
	ными методами	
	пыми методами	

Результаты освоения	Основные показатели оценки результата и и		
(объекты оценивания)	критерии		
Знать:	 источники погрешностей 		
– методы хранения чи-	 виды погрешностей 		
сел в памяти электронно-вычислительной машины	 классификацию погрешностей результата 		
	численного решения задачи		
(далее – ЭВМ) и действия над ними, оценку точности	 постановку задачи и методы численного 		
вычислений;	решения алгебраических и трансцендентных		
– методы решения ос-	уравнений		
новных математических за-	- алгоритм численного методы половинного		
дач – интегрирования, диф-	деления при решении алгебраических и трансцендентных уравнений		
ференцирования, решения	 алгоритм численного метода итераций при 		
линейных и трансцендент-	решении алгебраических и трансцендентных		
ных уравнений и систем	уравнений		
уравнений с помощью	 алгоритм численных методов хорд и каса- 		
ЭВМ.	тельных при решении алгебраических и трансцен-		
	дентных уравнений		
	 итерационные методы и их алгоритмы ре- 		
	шения СЛАУ		
	– интерполяционный многочлен Лагранжа		
	– интерполяционные формулы Ньютона		
	формулы Ньютона - Котеса		
	– алгоритмы методов прямоугольника, тра-		
	пеции, параболы		
	– алгоритм метода Эйлера		
	– алгоритм метода Рунге – Кутта.		

3. Распределение оценивания результатов обучения по видам контроля

з. гаспределение оценивани	V	Виды аттестации		
Наименование элемента умений или знаний	Наименование темы	Текущий контроль	Промежуточная аттестация	
У1 использовать основные численные методы решения математических задач;	Тема 1. Элементы теории погрешностей Тема 2. Приближённые решения алгебраических и трансцендентных уравнений Тема 3. Решение систем линейных алгебраических уравнений Тема 4. Интерполирование и экстраполирование функций Тема 5. Численное интегрирование Тема 6. Численное решение обыкновенных дифференциальных уравнений	Практическая работа №1 Вычисление погрешностей результатов арифметических действий Практическая работа №2 Применение метода половинного деления (метод дихотомии). Практическая работа №3 Применение метода итераций Практическая работа №4 Решение систем линейных уравнений приближёнными методами. Практическая работа №5 Применение интерполяционной формулы Лагранжа Практическая работа №6 Приближённое вычисление определённого интеграла Практическая работа №7 Численное интегрирование дифференциальных уравнений.	Зачётные вопросы и задания	
У2 выбирать оптимальный численный метод для решения поставленной задачи;	Тема 2. Приближённые решения алгебраических и трансцендентных уравнений Тема 3. Решение систем линейных алгебраических уравнений Тема 4. Интерполирование и экстраполирование функций Тема 5. Численное интегрирование	Практическая работа №2 Применение метода половинного деления (метод дихотомии). Практическая работа №3 Применение метода итераций Практическая работа №4 Решение систем линейных уравнений приближёнными методами. Практическая работа №5 Применение интерполяционной формулы Лагранжа Практическая работа №6 Приближённое вычисление определённого интеграла Практическая работа №7 Численное интегрирование дифференциальных уравнений.	Зачётные вопросы и задания	

		Виды аттестации		
Наименование элемента умений или знаний	Наименование темы	Текущий контроль	Промежуточная аттестация	
	Тема 6. Численное решение обыкновенных дифференциальных уравнений			
УЗ давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;	Тема 1. Элементы теории погрешностей Тема 4. Интерполирование и экстраполирование функций Тема 5. Численное интегрирование Тема 6. Численное решение обыкновенных дифференциальных уравнений	Практическая работа №1 Вычисление погрешностей результатов арифметических действий Практическая работа №5 Применение интерполяционной формулы Лагранжа Практическая работа №6 Приближённое вычисление определённого интеграла Практическая работа №7 Численное интегрирование дифференциальных уравнений.	Зачётные вопросы и задания	
У4 разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.	Тема 1. Элементы теории погрешностей Тема 2. Приближённые решения алгебраических и трансцендентных уравнений Тема 3. Решение систем линейных алгебраических уравнений Тема 4. Интерполирование и экстраполирование функций Тема 5. Численное интегрирование Тема 6. Численное решение обыкновенных дифференциальных уравнений	Практическая работа №1 Вычисление погрешностей результатов арифметических действий Практическая работа №2 Применение метода половинного деления (метод дихотомии). Практическая работа №3 Применение метода итераций Практическая работа №4 Решение систем линейных уравнений приближёнными методами. Практическая работа №5 Применение интерполяционной формулы Лагранжа Практическая работа №6 Приближённое вычисление определённого интеграла Практическая работа №7 Численное интегрирование дифференциальных уравнений.	Зачётные вопросы и задания	

		Виды аттестации		
Наименование элемента умений или знаний	Наименование темы	Текущий контроль	Промежуточная аттестация	
31 методы хранения чисел в памяти электронно-вычислительной машины (далее — ЭВМ) и действия над ними, оценку точности вычислений;	Тема 1. Элементы теории погрешностей Тема 4. Интерполирование и экстраполирование функций Тема 5. Численное интегрирование Тема 6. Численное решение обыкновенных дифференциальных уравнений	Практическая работа №1 Вычисление погрешностей результатов арифметических действий Практическая работа №5 Применение интерполяционной формулы Лагранжа Практическая работа №6 Приближённое вычисление определённого интеграла Практическая работа №7 Численное интегрирование дифференциальных уравнений.	Зачётные вопросы и задания	
32 методы решения основных математических задач — интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.	Тема 2. Приближённые решения алгебраических и трансцендентных уравнений Тема 3. Решение систем линейных алгебраических уравнений Тема 5. Численное интегрирование Тема 6. Численное решение обыкновенных дифференциальных уравнений	Практическая работа №2 Применение метода половинного деления (метод дихотомии). Практическая работа №3 Применение метода итераций Практическая работа №4 Решение систем линейных уравнений приближёнными методами. Практическая работа №6 Приближённое вычисление определённого интеграла Практическая работа №7 Численное интегрирование дифференциальных уравнений.	Зачётные вопросы и задания	

4. Структура контрольного задания

Тема 1. Элементы теории погрешностей

Практическая работа №1 Вычисление погрешностей результатов арифметических действий

Самостоятельная работа

Вопрос1

A - точное значение числа, a - приближенное. Найти абсолютную погрешность приближения, если

A=8,3 a=8,325

Вопрос 2

Округлите с точностью до 0,1 число

12,285

- 1) 12,2
- 2) 12,29
- 3) 12,3
- 4) 12

Вопрос 3

Приближенное значение числа A равно a = 71.

Абсолютная погрешность этого приближения равна 0,71. Найти относительную погрешность.

(несколько правильных ответов)

- 1) 0,01
- 2) 0,001
- 3) 1%
- 4) 10%

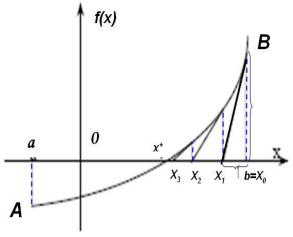
Тема 2. Приближённые решения алгебраических и трансцендентных уравнений

Практическая работа №2 Применение метода половинного деления (метод дихотомии).

Практическая работа №3 Применение метода итераций

Самостоятельная работа

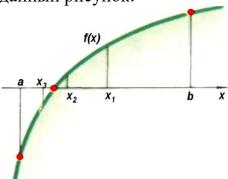
Вопрос 1


Указать интервал изоляции корня по таблице

x	0	1	2	3
f(x)	5	8	-1	-6

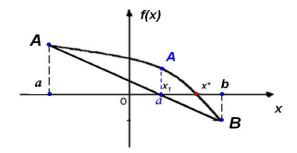
- 1) [**0**; **1**]
- 2) [8; -1]
- 3) [1; 2]
- 4) [2; -1]

Вопрос 2


Укажите, какой метод приближенного решения уравнения иллюстрирует данный рисунок:

- 1) Метод половинного деления
- 2) Метод хорд
- 3) Метод касательных

Вопрос 3


Укажите, какой метод приближенного решения уравнения иллюстрирует данный рисунок:

- 1) Метод половинного деления
- 2) Метод хорд
- 3) Метод касательных
- 4) Метод итераций

Вопрос 4

Укажите, какой метод приближенного решения уравнения иллюстрирует данный рисунок:

- 1) Метод половинного деления
- 2) Метод хорд
- 3) Метод касательных
- 4) Метод итераций

Вопрос 5

Укажите, какому численному методу решения уравнений соответствуют данные формулы

- 1) Метод половинного деления
- 2) Метод хорд
- 3) Метод касательных
- 4) Комбинированный метод хорд и касательных

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$-x_{1} = b - \frac{f(b)}{f(b) - f(a)}(b - a)$$

$$-x_{1} = \frac{a+b}{2}$$

Тема 3. Решение систем линейных алгебраических уравнений

Практическая работа №4 Решение систем линейных уравнений приближёнными методами.

Тема 4. Интерполирование и экстраполирование функций

Практическая работа №5 Применение интерполяционной формулы Лагранжа

Самостоятельная работа

Построить график интерполяционной функции f(x) методом:

1. полиномов Лагранжа;

- 2. полиномов Ньютона;
- 3. тригонометрических полиномов Фурье
- с произвольным порядком полинома, областью интерполяции и количеством точек, по которым производится интерполяция.

Оценить точность интерполяции на данном участке методом наименьших квадратов.

Тестовый пример: $f(x) = x \sin(x)$.

Устный опрос

- 1. В чём различие процедур аппроксимации, интерполяции и экстраполяции?
- 2. Опишите суть методов интерполяции Ньютона и Лагранжа. В чём сходство и различие этих методов, как они связаны между собой? Какой метод точнее? Какой из двух методов требует выполнения меньшего числа арифметических операций? Как определить погрешность метода в обоих случаях?
- 3. В каких случаях можно применять конечные разности, а в каких разделённые?
- 4. Опишите суть метода интерполяции тригонометрическими полиномами (полиномами Фурье). Каковы особенности применения данного метода?

Тема 5. Численное интегрирование

Практическая работа №6 Приближённое вычисление определённого интеграла

Самостоятельная работа

Вычислить определенный интеграл функции методом:

- 1. прямоугольников;
- 2. трапеций;
- 3. Симпсона;
- 4. Филона.

Определить точность метода на конкретном примере, допускающем аналитическое решение. Обратить внимание на границы применимости метода.

Тестовый пример: $f(x) = \cos x$ на интервале $[0, \pi]$.

Устный опрос

- 1. Что такое квадратурные формулы? Какие методы численного нахождения интеграла функций Вы знаете?
- 2. Опишите сущность метода прямоугольников.
- 3. Оцените погрешность методов правых и левых прямоугольников.
- 4. Опишите сущность метода трапеций. Объясните, почему погрешность данного метода больше погрешности метода прямоугольников. В каких случаях при вычислении интегралов используют метод трапеций?
- 5. Опишите сущность метода Симпсона. Оцените погрешность данного метода.

Тема 6. Численное решение обыкновенных дифференциальных уравнений

Практическая работа №7 Численное интегрирование дифференциальных уравнений.

1. Паспорт комплекта оценочных средств

1. Область применения комплекта оценочных средств

Комплект оценочных средств предназначен для оценки результатов освоения дисциплины Численные методы

Таблица 1

Знать:

- методы хранения чисел в памяти электронновычислительной машины (далее ЭВМ) и действия над ними, оценку точности вычислений;
- методы решения основных математических задач интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.

- источники погрешностей
- виды погрешностей
- классификацию погрешностей результата численного решения задачи
- постановку задачи и методы численного решения алгебраических и трансцендентных уравнений
- алгоритм численного методы половинного деления при решении алгебраических и трансцендентных уравнений
- алгоритм численного метода итераций при решении алгебраических и трансцендентных уравнений
- алгоритм численных методов хорд и касательных при решении алгебраических и трансцендентных уравнений
- итерационные методы и их алгоритмы решения СЛАУ
- интерполяционный многочлен Лагранжа
- интерполяционные формулы Ньютона
- формулы Ньютона Котеса
- алгоритмы методов прямоугольника, трапеции, параболы
- алгоритм метода Эйлера
- алгоритм метода Рунге Кутта.

2. Комплект оценочных средств

Дифференцированный зачёт по дисциплине Численные методы проводится в устной форме. Сложность зачётных вопросов соответствует уровню действующей учебной программы дисциплины Численные методы. Зачётные вопросы охватывают материал разделов дисциплины численные методы, изученных в 4 семестре, и включают в себя темы:

- Тема 1. Элементы теории погрешностей
- Тема 2. Приближённые решения алгебраических и трансцендентных уравнений
 - Тема 3. Решение систем линейных алгебраических уравнений
 - Тема 4. Интерполирование и экстраполирование функций
 - Тема 5. Численное интегрирование
- Тема 6. Численное решение обыкновенных дифференциальных уравнений

Вопросы к зачёту

- 1) Источники и классификация погрешностей результата численного решения задачи.
 - 2) Вычисление погрешностей результата численного решения задач.
- 3) Постановка задачи локализации корней. Численные методы решения уравнений.
- 4) Решение алгебраических и трансцендентных уравнений методом половинного деления и методом итераций.
- 5) Решение алгебраических и трансцендентных уравнений методами хорд и касательных.
 - 6) Метод Гаусса численного решения СЛАУ.
 - 7) Метод итераций решения СЛАУ. Метод Зейделя.
- 8) Интерполяционный многочлен Лагранжа. Интерполяционные формулы Ньютона.
 - 9) Интерполирование сплайнами.
- 10) Формулы Ньютона Котеса: методы прямоугольников, трапеций, парабол.
 - 11) Интегрирование с помощью формул Гаусса.
 - 12) Метод Эйлера. Уточнённая схема Эйлера.
 - 13) Метод Рунге Кутта.

2.2 Критерии оценки:

Оценка студенту выставляется по результатам зачёта. Оценку «отлично» получает студент, глубоко и осмысленно освоивший материал в полном объеме, предусмотренном программой курса, поработал с дополнительной литературой, умело использует теоретические знания на практике; при ответе на вопросы и при выполнении зачётных заданий.

Оценка «хорошо» ставится студенту, если он в полной мере освоил материал программы курса данной дисциплины, полностью изучил теоретический материал и владеет им для решения практических задач; при ответе на теоретические вопросы и при выполнении зачётных заданий.

Оценка «удовлетворительно» выставляется студенту, который владеет материалом в пределах программы курса дисциплины Численные методы, знает основные понятия, теоремы, свойства объектов и обладает достаточным набором знаний для продолжения обучения и дальнейшей профессиональной деятельности; при условии ответа на теоретические вопросы, выполнении зачётного задания.

Оценку «неудовлетворительно» получает студент, который имеет пробелы в знаниях основного учебного материала, не знает базовых понятий курса, не умеет практически применять формулы и методы численных методов, предусмотренные программой дисциплины. Студент не может успешно продолжать дальнейшее обучение в связи с недостаточным объемом знаний.

2.3 Условия выполнения задания

- 1. Место (время) выполнения задания: аудитория техникума
- 2. Максимальное время выполнения задания примерно: 15 мин./час.
- 3. Вы можете воспользоваться ручка, черновик, лист с заданием