МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРА-ЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕ-ЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Саровский физико-технический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СарФТИ НИЯУ МИФИ) ФИЗИКО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра теоретической физики

РАБОЧАЯ ПРОГРАММА У Биофиз	УТВЕРЖДАЮ: Декан ФТФ, член корреспондент РАН, д.фм.н А.К. Чернышев «» 2023г.
наименование	дисциплины
Направление подготовки (специальность) Наименование образовательной программы	03.04.01 Прикладные математика и физика Физика живых систем
паименование образовательной программы	Физика живых систем
Квалификация (степень) выпускника	магистр
Форма обучения	очная
Программа одобрена на заседании кафедры	Зав. кафедрой ТФ,
<u>протокол № * от ***** 2023 г</u> . г. Саров	

Программа переутверждена на 202учебный год с изменениями в соответ-
ствии с семестровыми учебными планами академических групп ФТФ на
202/202 учебный год. Заведующий кафедрой ТФ,
Программа переутверждена на 202/202учебный год с изменениями в соответствии с семестровыми учебными планами академических групп ФТФ на 202/202 учебный год.
Заведующий кафедрой ТФ,
Программа переутверждена на 202 / 202 учебный год с изменениями в соответствии с семестровыми учебными планами академических групп Φ Т Φ на 202 / 202 учебный год. Заведующий кафедрой Т Φ ,
Программа переутверждена на 202 / 202 учебный год с изменениями в соответствии с семестровыми учебными планами академических групп Φ Т Φ на 202 / 202 учебный год. Заведующий кафедрой Т Φ ,
Программа переутверждена на 202 / 202 учебный год с изменениями в соответствии с семестровыми учебными планами академических групп Φ Т Φ на 202 / 202 учебный год. Заведующий кафедрой Т Φ ,

Семестр	В форме прак- тической подго- товки	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. заня- тия, час.	Лаборат. работы, час.	СРС, час.	КР/ КП	Форма(ы) кон- троля, экз./зач./3сО/
1	16	4	144	32	16	0	60	36	Э
ИТОГО	16	4	144	32	16	0	60	36	Э

АННОТАЦИЯ

Дисциплина "Биофизика клетки" изучает молекулярную организацию и физико-химические свойства мембран, механизмы трансформации энергии в клетках, физические основы процессов транспорта веществ через биомембраны и биоэлектрогенеза, физико-химические основы процессов передачи информации в клетке, функционирования сократительных систем, процессов рецепции и другие вопросы. В ходе изучения дисциплины студенты знакомятся с физико-химическими принципами функционирования клеточных систем, с основными достижениями биофизики клетки на современном этапе ее развития.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью данного курса является формирование у студентов системных знаний о физических закономерностях функционировании клеток и тканей, о физических свойствах биологических структур и методах их изучения. Студенты также должны получить представление об особенностях и механизмах действия различных экзогенных физических факторов на живые системы. Эти знания необходимы для более эффективного изучения и понимания других дисциплин биологического профиля, обеспечивают усвоение студентами принципов системного научного анализа и научной методологии.

Задачами освоения дисциплины "Биофизика клетки" являются:

- сформировать представления о физических и физико-химических процессах, лежащих в основе функционирования клеток и клеточных структур, в частности сформировать представление:
 - о об общих принципах обмена веществ и энергии на клеточном и организменном уровнях,
 - о механизмах транспорта ионов и молекул через биологические мембраны,
- дать стройное понимание современных проблем и методологии клеточных и мембранных процессов, основных понятий, законов и моделей, применяемых в биофизике клеточных систем.
- научить оперировать специальной терминологией биофизики клетки, в том числе использованию теоретических знаний для объяснения особенностей действия физических факторов на живые организмы,
- научить выводить уравнения, характеризующие закономерности процессов электрогенеза и преобразования энергии в биосистемах, а также рассчитывать физические характеристики клеток и клеточных структур.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина «Биофизика клетки» относится к вариативной части рабочего учебного плана по направлению 03.04.01 «Прикладные математика и физика».

Для успешного освоения дисциплины «Биофизика клетки» необходимы компетенции, формируемые в результате освоения следующих дисциплин:

- Уравнения математической физики
- Вычислительная математика
- Общая физика
- Химия

Изучение дисциплины «Биофизика клетки» необходимо для успешного освоения следующих дисциплин:

- Математическое моделирование биологических процессов
- Молекулярная биология

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

<u>Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:</u>

Задача профессио- нальной деятель- ности (ЗПД)	Объект или об- ласть знания	Код и наименова- ние профессио- нальной компе- тенции	Код и наименование индикатора достижения профессиональной компетенции					
	проектный							
Организация выполнения проектов исследовательской и инновационной направленности в качестве исполнителя, ответственного за выполнение отдельного направления работ	Моделирование в биофизике: физио- логия человека на разных уровнях (молекулярном, клеточном, орган- ном, целого орга- низма), биохимия, качественные и ко- личественные раз- личия между нор- мальным и патоло- гическим состояни- ем организма чело- века, методы мате- матического моде- лирования и обла- сти их применения, компьютерные и программные сред- ства моделирова- ния, визуализации и описания исследо- вания	ПК-14.1 Способен к выполнению научно- исследовательской деятельности в медико- биологической области: молекулярной и медицинской биофизике, анализу результатов исследования	З-ПК-14.1 Знать теоретические основы фундаментальных и медико-биологических наук, качественные различия между здоровьем и болезнью, этиология, патогенез и клинические проявления наиболее часто встречающихся заболеваний, принципы их профилактики, лечения, а также общие закономерности нарушений функций систем организма У-ПК-14.1 Уметь обосновывать научное исследование, анализировать современную биофизическую и медико-биологическую информацию по теме исследования, применять методы математического анализа, интерпретировать результаты исследования с целью выяснения механизмов развития патологических процессов В-ПК-14.1 Владеть навыками планирования и проведения перспективных исследований по биофизике, направленных на по-					

	лучение новых фун-
	даментальных знаний
	о физико-химических
	механизмах функцио-
	нирования человече-
	ского организма в
	норме и при патологии

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ*

			Виды учебной работы					
№ п/п	Наименование раздела /темы	№ неде-	Лекции	Практ. заня- тия/ семинары	Лаб. работы	СРС	Текущий	Макси- мальный
	дисциплины	ЛИ					контроль (форма)*	балл (см. п. 5.3)
				Семестр 3	№ 1			-
1.	Название раз- дела							
1.1.	Введение в предмет био- физики клетки	1	6	3		10		
1.2.	Биофизика клеточных мембран	2-4	4	2		8	УО	
1.3	Термодинами- ка клеточных процессов	5-6	4	2		10	УО	
	Рубежный контроль	7					Контр.	20
2.	Название раз- дела							
2.1.	Энергетиче- ские процессы в клетках	8-9	6	3		8		
2.2.	Биофизика нервного им- пульса	10-11	4	2		8	УО	
2.3	Биофизика мышечного сокращения	12-13	4	2		8	УО	
2.4	Механизмы регуляции клеточной активности	14-15	4	2		8	УО	
	Рубежный контроль	16					Контр.	25
П	Промежуточная атте- стация		Экзамен				36	0 - 50
	Посещае	мость						5
		Ітого:						100

^{*}Сокращение наименований форм текущего, рубежного и промежуточного контроля:

УО – устный опрос

Контр. – контрольная работа

4.2. Содержание дисциплины, структурированное по разделам (темам)

Лекционный курс

No	Наименование раздела /темы дисциплины	Содержание				
1.	Название раздела 1					
1.1.	Введение в предмет био-	Введение. Понятие «живая система». Молекулярно-клеточные				
	физики клетки	принципы организации живых систем. Предмет биофизики. Предмет биофизики клетки. Общая схема строения клеток. Макро- и микроэлементы в организме человека. Основные физические явления в биологических системах.				
1.2.	Биофизика клеточных мембран	Биофизика мембран. Мембрана как универсальный компонент биологических систем. Принципы строения биомембран, мембранные белки и липиды. Вода как составной элемент биомембран. Характеристика мембранных белков. Характеристика мембранных липидов. Пассивный транспорт. Типы диффузии (простая, ограниченна, облегченная), мембранные поры. Осмос и фильтрация. Транспорт сахаров и аминокислот через мембраны с участием переносчиков. Электрохимический потенциал. Ионное равновесие на границе мембрана - раствор. Профили потенциала и концентрации ионов в двойном электрическом слое. Потенциал покоя, его происхождение. Уравнения Фика, Теорелла, Нернста-Планка, Хилла. Активный транспорт – роль в клетке, типы и примеры. Электрогенный транспорт ионов. Участие АТФаз в активном транспорте ионов через биологические мембраны. Ионные каналы, теория однорядного транспорта. Ионофоры: переносчики и каналообразующие агенты. Ионная селективность мембран (термодинамический и кинетический подходы). Потенциал действия. Возбудимость, распространение нервного импульса, синаптическая передача. Роль ионов Na+ и K+ в генерации потенциала действия в нервных и мышечных волокнах; роль ионов Са ²⁺ и Cl- генерации потенциала действия у других объектов. Механизмы активации и инактивации каналов. Строение, принципы функционирования натрий-калиевого, кальциевого насосов. Общие закономерности взаимодействия лигандов с рецепторами. Общие представления о структуре и функции рецепторных клеток. Связь транспорта ионов и процесса переноса электрона в митохондриях. Локализация электротранспортных цепей в мембране митохондрий. Структурные аспекты функционирования связанных с мембраной переносчиков. Асимметрия мембраны митохондрий.				
1.3.	Термодинамика клеточ-	Электрохимический градиент протонов Термодинамический анализ в биофизике клетки. Термодинами-				
	ных процессов	ческие понятия. Термодинамическое равновесие. Термодинамические системы, типы энергии и работы в биосистемах. Термодинамика мембранных (и клеточных) процессов. Свободная энергия. Электрохимический потенциал. Формы превращения энергии в организме. Первый и второй законы термодинамики в биологии. Теплоемкость и сжимаемость белковых глобул. Расчеты энергетических эффектов реакций в биологических системах. Характеристические функции и их использование в анализе биологических процессов. Изменение энтропии в открытых системах. Термодинамика транспорта веществ через мембраны. Теорема Пригожина. Соотношения Онзагера. Применение ли-				

		нейной термодинамики в биологии. Термодинамические характеристики молекулярно-энергетических процессов в биосистемах. Нелинейная термодинамика. Общие критерии устойчивости стационарных состояний и перехода к ним вблизи и вдали от равновесия. Связь энтропии и информации в биологических системах.
2.	Название раздела 2	
2.1.	Энергетические процес-	Физические основы преобразования и аккумуляции энергии в
	сы в клетках	биологических системах. Строение и функции митохондрий. Митохондриальная система транспорта электронов. Сопряжение процессов протонного и электронного транспорта. Пути поступления электронов в дыхательную цепь. Основы строения и функционирования электрон-транспортных комплексов митохондрий. Механизмы транспорта протонов в митохондриальной мембране (механизм петли и протонный насос). О-цикл. Механизм сопряжения протонного и электронного транспорта в Q-цикле. Энергетика переноса электронов. Перенос протонов и градиент электрохимического потенциала протонов на мембране. Окислительное фосфорилирование. Основные положения хемиоосмотической теории Митчелла.
2.2.	Биофизика нервного им-	Физика нервного импульса. Строение нейрона. Сома клетки,
	пульса	нейриты и синапсы. Передача сигналов в синапсах. Потенциал покоя и потенциал действия. Молекулярные основы генерации потенциала действия. Эквивалентная электрическая схема пассивного тока ионов через мембрану. Емкостные токи.
2.3.	Биофизика мышечного сокращения	Биофизика мышечного сокращения. Организация скелетных мышц позвоночных. Система электромеханического сопряжения мышцы. Механизм сокращения мышечных волокон. Актомиозиновый комплекс. Мостиковая гипотеза генерации силы. Регуляция сокращения мышечных волокон. Механика и энергетика мышечного сокращения. Энергетический обмен в мышечной ткани.
2.4.	Механизмы регуляции клеточной активности	Механизмы регуляции клеточной активности. Основные принципы обработки информации в клетках. Структуры записи и хранения информации в клетках. Концепция первичных и вторичных мессенджеров. Рецепция информации в клетках. Связывание лигандов с рецепторами. Физико-химические основы лиганд-рецепторного взаимодействия. Константа связывания и диссоциации. Закон действующих масс. цАМФ-зависимая система передачи сигнала: строение и принципы функционирования. Регуляция активности белков путем фосфорилирования. Протеинкиназы и фосфатазы. Ферментативный каскад.

Практические/семинарские занятия

№	Наименование раздела /темы дисциплины	Содержание
1.	Название раздела 1.	
1.1.	Введение в предмет био-	Сравнительный анализ строения прокариотов и эукариотов.
	физики клетки	
1.2.	Биофизика клеточных	Динамика молекул в мембранах – латеральная диффузия, вра-
	мембран	щательная подвижность, флип-флоп подвижность. Белок-
		липидные взаимодействия. Модельные липидные мембраны –
		типы, строение, способы получения, использование. Фазовые

		переходы в липидных биомембранах. Подвижность мембран-
		ных белков. Бислойные мембраны. Формирование липидной
		капли. Классификация транспортных процессов в биомембра-
		нах. Явление поляризации в мембранах.
1.3.	Термодинамика клеточ-	Эндергонические и экзергонические процессы. Принцип энер-
	ных процессов	гетического сопряжения. Обобщенные силы и обобщенные по-
		токи. Основные положения неравновесной термодинамики. Со-
		пряжение потоков в биосистемах.
2.	Название раздела 2.	
2.1.	Энергетические процес-	Протондвижущая сила и термодинамика синтеза АТФ. Строе-
	сы в клетках	ние Н+ -АТФ синтазного комплекса. Синтез АТФ в активном
		центре фермента. Физические основы функционирования ком-
		плекса. Молекулярные моторы.
2.2.	Биофизика нервного им-	Модель Ходжкина-Хаксли. Распространение потенциалов дей-
	пульса	ствия. Вывод кабельного уравнения.
2.3.	Биофизика мышечного	Соотношения Хилла. Математическое моделирование мышеч-
	сокращения	ного сокращения.
2.4.	Механизмы регуляции	Фосфатидил-инозитольная система передачи сигнала: строение
	клеточной активности	и принципы функционирования. Рецепторы с тирозинкиназной
		активностью. Роль активных форм кислорода в трансдукции
		сигнала. Редокс-сигнализация и редокс-регуляция.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВА-ЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИС-ЦИПЛИНЫ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

5.1. Паспорт фонда оценочных средств по дисциплине

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Раздел	Темы занятий	Компетенция	Индикаторы освоения	Текущий кон- троль, неделя
		Семестр 6		1
	1.1. Введение в предмет биофизики клетки			
Раздел 1	1.2. Биофизика клеточных мембран	ПК-14.1	3-ПК-14.1;У-ПК- 14.1; В-ПК-14.1	УО - 3
	1.3. Термодинамика клеточных процессов		14.1, <i>D</i> -111(-14.1	УО - 5
	Рубежный контроль	ПК-14.1	3-ПК-14.1;У-ПК- 14.1; В-ПК-14.1	Контр -7
Раздел 2	2.1. Энергетические процессы в клетках2.2. Биофизика нервного импульса2.3. Биофизика мышечно-	ПК-14.1	3-ПК-14.1;У-ПК- 14.1; В-ПК-14.1	УО – 11 УО – 13
	го сокращения 2.4. Механизмы регуляции клеточной активности			УО – 15
	Рубежный контроль	ПК-14.1	3-ПК-14.1;У-ПК- 14.1; В-ПК-14.1	Контр – 16
П	ромежуточная аттестация	ПК-14.1	3-ПК-14.1;У-ПК- 14.1; В-ПК-14.1	Экзамен

5.2. Примерные контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

5.2.1. Оценочные средства для текущего контроля (УО)

- 1. Общая схема строения клеток.
- 2. Сравнительный анализ строения прокариотов и эукариотов.
- 3. строения биомембран, мембранные белки и липиды.
- 4. Характеристика мембранных белков.
- 5. Характеристика мембранных липидов.
- 6. Фазовые переходы в липидных биомембранах.
- 7. Подвижность мембранных белков.
- 8. Формирование липидной капли.
- 9. Классификация транспортных процессов в биомембранах.
- 10. Типы диффузии (простая, ограниченна, облегченная), мембранные поры.
- 11. Транспорт сахаров и аминокислот через мембраны с участием переносчиков.
- 12. Электрохимический потенциал.
- 13. Ионное равновесие на границе мембрана раствор.
- 14. Потенциал покоя, его происхождение. Уравнения Фика, Теорелла, Нернста-Планка, Хилла.
- 15. Электрогенный транспорт ионов.
- 16. Участие АТФаз в активном транспорте ионов через биологические мембраны.
- 17. Потенциал действия.
- 18. Механизмы активации и инактивации каналов.
- 19. Локализация электротранспортных цепей в мембране митохондрий.
- 20. Асимметрия мембраны митохондрий.
- 21. Термодинамическое равновесие.
- 22. Свободная энергия. Электрохимический потенциал.
- 23. Первый и второй законы термодинамики в биологии.
- 24. Теплоемкость и сжимаемость белковых глобул.
- 25. Теорема Пригожина.
- 26. Соотношения Онзагера.
- 27. Строение и функции митохондрий.
- 28. Митохондриальная система транспорта электронов.
- 29. Q-цикл.
- 30. Окислительное фосфорилирование.
- 31. Основные положения хемиоосмотической теории Митчелла.
- 32. Протондвижущая сила и термодинамика синтеза АТФ.
- 33. Синтез АТФ в активном центре фермента.
- 34. Строение нейрона.
- 35. Передача сигналов в синапсах.
- 36. Организация скелетных мышц позвоночных.
- 37. Акто-миозиновый комплекс.
- 38. Соотношения Хилла.
- 39. Концепция первичных и вторичных мессенджеров.

5.2.2. Оценочные средства для рубежного контроля (вопросы для письменной контрольной работы)

- 1. Биофизика мембран. Мембрана как универсальный компонент биологических систем. Принципы строения биомембран, мембранные белки и липиды. Вода как составной элемент биомембран. Характеристика мембранных белков. Характеристика мембранных липидов.
- 2. Фазовые переходы в липидных биомембранах. Подвижность мембранных белков. Бислойные мембраны. Формирование липидной капли. Классификация транспортных процессов в биомембранах. Явление поляризации в мембранах. Пассивный транспорт.

- 3. Типы диффузии (простая, ограниченна, облегченная), мембранные поры. Осмос и фильтрация. Транспорт сахаров и аминокислот через мембраны с участием переносчиков.
- 4. Электрохимический потенциал. Ионное равновесие на границе мембрана раствор. Профили потенциала и концентрации ионов в двойном электрическом слое. Потенциал покоя, его происхождение.
- 5. Уравнения Фика, Теорелла, Нернста-Планка, Хилла. Активный транспорт роль в клетке, типы и примеры. Электрогенный транспорт ионов.
- 6. Участие АТФаз в активном транспорте ионов через биологические мембраны. Механизмы активации и инактивации каналов. Строение, принципы функционирования натрий-калиевого, кальциевого насосов.
- 7. Общие закономерности взаимодействия лигандов с рецепторами. Общие представления о структуре и функции рецепторных клеток. Связь транспорта ионов и процесса переноса электрона в митохондриях. Локализация электротранспортных цепей в мембране митохондрий.
- 8. Термодинамическое равновесие. Термодинамические системы, типы энергии и работы в биосистемах. Термодинамика мембранных (и клеточных) процессов. Свободная энергия. Электрохимический потенциал.
- 9. Формы превращения энергии в организме. Первый и второй законы термодинамики в биологии.
- 10. Термодинамика транспорта веществ через мембраны. Теорема Пригожина. Соотношения Онзагера. Применение линейной термодинамики в биологии. Термодинамические характеристики молекулярно-энергетических процессов в биосистемах.
- 11. Строение и функции митохондрий. Митохондриальная система транспорта электронов. Сопряжение процессов протонного и электронного транспорта. Пути поступления электронов в дыхательную цепь.
- 12. Основы строения и функционирования электрон-транспортных комплексов митохондрий. Механизмы транспорта протонов в митохондриальной мембране (механизм петли и протонный насос).
- 13. Q-цикл. Механизм сопряжения протонного и электронного транспорта в Q-цикле. Энергетика переноса электронов. Перенос протонов и градиент электрохимического потенциала протонов на мембране.
- 14. Окислительное фосфорилирование. Основные положения хемиоосмотической теории Митчелла.
- 15. Передача сигналов в синапсах. Потенциал покоя и потенциал действия. Молекулярные основы генерации потенциала действия.
- 16. Система электромеханического сопряжения мышцы. Механизм сокращения мышечных волокон. Акто-миозиновый комплекс. Мостиковая гипотеза генерации силы. Регуляция сокращения мышечных волокон.
- 17. Механизмы регуляции клеточной активности. Концепция первичных и вторичных мессенджеров. Рецепция информации в клетках. Связывание лигандов с рецепторами. Физико-химические основы лиганд-рецепторного взаимодействия.

5.2.3. Оценочные средства для промежуточной аттестации (примерные вопросы к экзамену)

- 1. Понятие «живая система». Молекулярно-клеточные принципы организации живых систем. Предмет биофизики. Предмет биофизики клетки. Общая схема строения клеток. Сравнительный анализ строения прокариотов и эукариотов. Основные физические явления в биологических системах.
- 2. Биофизика мембран. Мембрана как универсальный компонент биологических систем. Принципы строения биомембран, мембранные белки и липиды. Вода как со-

- ставной элемент биомембран. Характеристика мембранных белков. Характеристика мембранных липидов. Динамика молекул в мембранах латеральная диффузия, вращательная подвижность, флип-флоп подвижность.
- 3. Белок-липидные взаимодействия. Модельные липидные мембраны типы, строение, способы получения, использование. Фазовые переходы в липидных биомембранах. Подвижность мембранных белков. Бислойные мембраны. Формирование липидной капли.
- 4. Классификация транспортных процессов в биомембранах. Явление поляризации в мембранах. Пассивный транспорт. Типы диффузии (простая, ограниченна, облегченная), мембранные поры. Осмос и фильтрация. Транспорт сахаров и аминокислот через мембраны с участием переносчиков.
- 5. Электрохимический потенциал. Ионное равновесие на границе мембрана раствор. Профили потенциала и концентрации ионов в двойном электрическом слое. Потенциал покоя, его происхождение. Уравнения Фика, Теорелла, Нернста-Планка, Хилла.
- 6. Активный транспорт роль в клетке, типы и примеры. Электрогенный транспорт ионов. Участие АТФаз в активном транспорте ионов через биологические мембраны. Ионные каналы, теория однорядного транспорта. Ионофоры: переносчики и каналообразующие агенты. Ионная селективность мембран (термодинамический и кинетический подходы).
- 7. Потенциал действия. Возбудимость, распространение нервного импульса, синаптическая передача. Роль ионов Na+ и K+ в генерации потенциала действия в нервных и мышечных волокнах; роль ионов Ca²⁺ и Cl- генерации потенциала действия у других объектов.
- 8. Механизмы активации и инактивации каналов. Строение, принципы функционирования натрий-калиевого, кальциевого насосов. Общие закономерности взаимодействия лигандов с рецепторами. Общие представления о структуре и функции рецепторных клеток.
- 9. Связь транспорта ионов и процесса переноса электрона в митохондриях. Локализация электротранспортных цепей в мембране митохондрий. Структурные аспекты функционирования связанных с мембраной переносчиков. Асимметрия мембраны митохондрий. Основные положения теории Митчелла. Электрохимический градиент протонов.
- 10. Термодинамический анализ в биофизике клетки. Термодинамические понятия. Термодинамическое равновесие. Термодинамические системы, типы энергии и работы в биосистемах. Термодинамика мембранных (и клеточных) процессов. Свободная энергия. Электрохимический потенциал. Формы превращения энергии в организме. Первый и второй законы термодинамики в биологии.
- 11. Характеристические функции и их использование в анализе биологических процессов. Изменение энтропии в открытых системах. Эндергонические и экзергонические процессы. Принцип энергетического сопряжения. Обобщенные силы и обобщенные потоки.
- 12. Сопряжение потоков в биосистемах. Термодинамика транспорта веществ через мембраны. Теорема Пригожина. Соотношения Онзагера.
- 13. Применение линейной термодинамики в биологии. Термодинамические характеристики молекулярно-энергетических процессов в биосистемах. Нелинейная термодинамика. Общие критерии устойчивости стационарных состояний и перехода к ним вблизи и вдали от равновесия. Связь энтропии и информации в биологических системах.
- 14. Физические основы преобразования и аккумуляции энергии в биологических системах. Строение и функции митохондрий. Митохондриальная система транспорта

- электронов. Сопряжение процессов протонного и электронного транспорта. Пути поступления электронов в дыхательную цепь.
- 15. Основы строения и функционирования электрон-транспортных комплексов митохондрий. Механизмы транспорта протонов в митохондриальной мембране (механизм петли и протонный насос).
- 16. Q-цикл. Механизм сопряжения протонного и электронного транспорта в Q-цикле. Энергетика переноса электронов. Перенос протонов и градиент электрохимического потенциала протонов на мембране. Окислительное фосфорилирование. Основные положения хемиоосмотической теории Митчелла.
- 17. Протондвижущая сила и термодинамика синтеза АТФ. Строение H+ -АТФ синтазного комплекса. Синтез АТФ в активном центре фермента. Физические основы функционирования комплекса. Молекулярные моторы.
- 18. Физика нервного импульса. Строение нейрона. Сома клетки, нейриты и синапсы. Передача сигналов в синапсах. Потенциал покоя и потенциал действия. Молекулярные основы генерации потенциала действия.
- 19. Эквивалентная электрическая схема пассивного тока ионов через мембрану. Емкостные токи. Модель Ходжкина-Хаксли. Распространение потенциалов действия. Вывод кабельного уравнения.
- 20. Биофизика мышечного сокращения. Организация скелетных мышц позвоночных. Система электромеханического сопряжения мышцы. Механизм сокращения мышечных волокон. Акто-миозиновый комплекс. Мостиковая гипотеза генерации силы. Регуляция сокращения мышечных волокон.
- 21. Механика и энергетика мышечного сокращения. Соотношения Хилла. Математическое моделирование мышечного сокращения. Энергетический обмен в мышечной ткани.
- 22. Механизмы регуляции клеточной активности. Основные принципы обработки информации в клетках. Структуры записи и хранения информации в клетках. Концепция первичных и вторичных мессенджеров. Рецепция информации в клетках. Связывание лигандов с рецепторами. Физико-химические основы лигандрецепторного взаимодействия.
- 23. цАМФ-зависимая система передачи сигнала: строение и принципы функционирования. Регуляция активности белков путем фосфорилирования. Протеинкиназы и фосфатазы. Ферментативный каскад. Фосфатидил-инозитольная система передачи сигнала: строение и принципы функционирования.

5.3. Шкалы оценки образовательных достижений

Рейтинговая оценка знаний является интегральным показателем качества теоретических и практических знаний и навыков студентов по дисциплине и складывается из оценок, полученных в ходе текущего контроля и промежуточной аттестации.

Результаты текущего контроля и промежуточной аттестации подводятся по шкале балльно-рейтинговой системы.

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балль- ной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, по-

		следовательно, четко и логически стройно
		его излагает, умеет тесно увязывать тео-
		рию с практикой, использует в ответе ма-
		териал монографической литературы.
	В	Оценка «хорошо» выставляется студенту,
	С	если он твёрдо знает материал, грамотно и
4 – «хорошо»		по существу излагает его, не допуская су-
		щественных неточностей в ответе на во-
	- D	прос.
		Оценка «удовлетворительно» выставляет-
]	Б	ся студенту, если он имеет знания только
2		основного материала, но не усвоил его
=		деталей, допускает неточности, недоста-
HO»	E	точно правильные формулировки, нару-
		шения логической последовательности в
		изложении программного материала.
		Оценка «неудовлетворительно» выставля-
		ется студенту, который не знает значи-
		тельной части программного материала,
2 – «неудовлетвори -	_	допускает существенные ошибки. Как
тельно»	F	правило, оценка «неудовлетворительно»
		ставится студентам, которые не могут
		продолжить обучение без дополнительных
		занятий по соответствующей дисциплине.
	3 — «удовлетворитель- но» 2 — «неудовлетвори-	4 – «хорошо» D 3 – «удовлетворительно» E 2 – «неудовлетвори- F

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕ-НИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ЛИТЕРАТУРА:

- 1. Плутахин Г.А., Кощаев А.Г. Биофизика: учеб. пособие [для студ. вузов]. Изд. 2-е, перераб. и доп. СПб., Лань, 2012. 240 с.
- 2. Волькенштейн М.В. Биофизика: учеб.пособие СПб., Лань, 2012. 608с.
- 3. Васильев А. А. Медицинская и биологическая физика. Тестовые задания. 2-е изд., испр. и доп. Учебное пособие для вузов. М.: Юрайт, 2019. 189 с.
- 4. Васильев А. А. Медицинская и биологическая физика. Лабораторный практикум: учебное пособие для вузов / А. А. Васильев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 313 с.
- 5. Альбертс Б., Джонсон А., Льюис Дж., Рэфф М., Робертс К., Уолтер П. "Основы молекулярной биологии клетки" из-во Лаборатория знаний, 2018. ISBN 978-5-00101-087-6.
- 6. Савельев Н.В. Курс общей физики. Т.1. Механика и молекулярная физика М.: Наука, 1977, Т.3, Молекулярная физика, 2002.
- 7. Сивухин Д.В. Термодинамика и молекулярная физика. Т.2, М.: Наука, 1975, Физматлит МФТИ, 2003.
- 8. Рубин А.Б. Биофизика. В 2-х книгах. Кн.1. Теоретическая биофизика. М.: Высшая шк. 1999.
- 9. Рубин А.Б. Биофизика. В 2-х книгах. Кн.2. Биофизика клеточных процес сов. М.: Высшая шк. 1999.

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При чтении лекционного материала используется электронное сопровождение курса: справочно-иллюстративный материал воспроизводится и озвучивается в аудитории с
использованием проектора и переносного компьютера в реальном времени.
Рабочая программа дисциплины составлена в соответствии с ОС НИЯУ МИФИ
(ФГОС) и учебным планом основной образовательной программы (программ).
Автор(ы): Докукина И.В., к. фм.н., доцент кафедры высшей математики
Рецензент(ы):