МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРА-ЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕ-ЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Саровский физико-технический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СарФТИ НИЯУ МИФИ) ФИЗИКО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра теоретической физики

	УТВЕРЖДАЮ: Декан ФТФ, член корреспондент РАН, д.фм.н А.К. Чернышев 2023г.
Современные проблем специальн	УЧЕБНОЙ ДИСЦИПЛИНЫ ы естествознания и устойчивого развития: ные главы биофизики е дисциплины
Направление подготовки (специальность)	03.03.01 Прикладные математика и физика
Наименование образовательной программы	Физика живых систем
Квалификация (степень) выпускника	магистр
Форма обучения	очная
Программа одобрена на заседании кафедры	Зав. кафедрой ТФ,
<u>протокол № * от ***** 2023</u> г. г. Саров	

Программа переутверждена на 202	/202	учебный год с изменениями в соответ-
ствии с семестровыми учебными план	нами акад	цемических групп ФТФ на
202/202 учебный год.		
Заведующий кафедрой ТФ,		
_		
		учебный год с изменениями в соответ-
ствии с семестровыми учебными план	нами акад	цемических групп ФТФ на
202/202 учебный год.		
Заведующий кафедрой ТФ,		
П	/202	<i>-</i>
		учебный год с изменениями в соответ-
ствии с семестровыми учебными план	нами акад	цемических групп ФТФ на
202/202 учебный год. Заведующий кафедрой ТФ,		
заведующий кафедрой ТФ,		
Программа переутверждена на 202	/202	учебный год с изменениями в соответ-
ствии с семестровыми учебными план		
202 /202 учебный год.	тами акад	Committee and The Table
Заведующий кафедрой ТФ,		
T OF		
Программа переутверждена на 202	/202	учебный год с изменениями в соответ-
ствии с семестровыми учебными план		
202/202 учебный год.	·	10
Заведующий кафедрой ТФ,		

Семестр	В форме практической подготовки	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. заня- тия, час.	Лаборат. работы, час.	СРС, час.	КР/ КП	Форма(ы) кон- троля, экз./зач./3сО/
1	32	3	108	16	32	0	60	36	Зач.
ИТОГО	32	3	108	16	32	0	60	36	Зач.

АННОТАЦИЯ

Дисциплина "Современные проблемы естествознания и устойчивого развития: специальные главы биофизики" изучает разделы биофизики живых организмов, выходящие за рамки программы курсов «Биофизика клетки»/«Биохимия метаболизма», однако являющиеся важными для понимания студентами строения и механизмов функционирования живых клеток, тканей и органов. В ходе изучения дисциплины студенты знакомятся с теорией химической кинетики, проблемами кальциевой сигнализации в различных типах клеток и тканей, аспектами механики подвижных клеток.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью данного курса является формирование у студентов системных знаний о физических закономерностях функционировании клеток и тканей, о физических, структурных и механических свойствах клеток и тканей. Студенты также должны получить представление об особенностях клеточной сигнализации, опосредованной ионами кальция. Эти знания необходимы для более эффективного изучения и понимания других дисциплин биологического профиля, обеспечивают усвоение студентами принципов системного научного анализа и научной методологии.

Задачами освоения дисциплины "Современные проблемы естествознания и устойчивого развития: специальные главы биофизики" являются:

- сформировать представления о физических, структурных и механических особенностях функционирования клеток и клеточных структур,
- дать стройное понимание современных проблем и методологии клеточных и мембранных процессов, основных понятий, законов и моделей, применяемых в биофизике клеточных систем,
- научить использованию аппарата теории химической кинетики для описания биохимических и сигнальных процессов внутри клетки.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина «Современные проблемы естествознания и устойчивого развития: специальные главы биофизики» относится к обязательной части рабочего учебного плана по направлению 03.04.01 «Прикладные математика и физика».

Для успешного освоения дисциплины «Современные проблемы естествознания и устойчивого развития: специальные главы биофизики» необходимы компетенции, формируемые в результате освоения следующих дисциплин:

- Уравнения математической физики
- Вычислительная математика
- Общая физика
- Химия
- Методы моделирования эксперимента

Изучение дисциплины «Современные проблемы естествознания и устойчивого развития: специальные главы биофизики» необходимо для успешного освоения следующих дисциплин:

- Математическое моделирование биологических процессов
- Молекулярная биология

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и общепрофессиональные компетенции:

TC	TC.
Код и наименование компетен- ции	Код и наименование индикатора достижения компе- тенции
УКЦ-1 Способен решать иссле-	3-УКЦ-1 Знать современные цифровые технологии,
довательские, научно-	используемые для выстраивания деловой коммуника-
технические и производствен-	ции и организации индивидуальной и командной рабо-
ные задачи в условиях неопре-	ТЫ
деленности, в том числе выстра-	У-УКЦ-1 Уметь подбирать наиболее релевантные
ивать деловую коммуникацию и	цифровые решения для достижения поставленных це-
организовывать работу команды	лей и задач, в том числе в условиях неопределенности
с использованием цифровых ре-	В-УКЦ-1 Владеть навыками решения исследователь-
сурсов и технологий в цифровой	ских, научно-технических и производственных задач с
среде	использованием цифровых технологий
УКЦ-2 Способен к самообуче-	3-УКЦ-2 Знать основные цифровые платформы, техно-
нию, самоактуализации и само-	логи и интернет ресурсы используемые при онлайн
развитию с использованием раз-	обучении
личных цифровых технологий в	У-УКЦ-2 Уметь использовать различные цифровые
условиях их непрерывного со-	технологии для организации обучения
вершенствования	В-УКЦ-2 Владеть навыками самообучения, самоактуа-
вершенетвования	лизации и саморазвития с использованием различных
	цифровых технологий
ОПК-1 Способен применять	3-ОПК-1 Знать фундаментальные и прикладные осно-
фундаментальные и прикладные	вы, полученные в области физико-математических и
знания в области физико-	естественных наук, знать методы анализа информации
математических и (или) есте-	для решения профессиональных задач, в том числе в
` /	
ственных наук для решения	сфере педагогической деятельности.
профессиональных задач, в том	У-ОПК-1 Уметь использовать на практике углублен-
числе в сфере педагогической	ные фундаментальные знания, полученные в области
деятельности	физико-математических и естественных наук для ре-
	шения профессиональных задач, в том числе в сфере
	педагогической деятельности.
	В-ОПК-1 Владеть навыками обобщения, синтеза и ана-
	лиза фундаментальных знаний, для решения профес-
	сиональных задач, в том числе в сфере педагогической
OHK 2 C5-	деятельности, владеть научным мировоззрением
ОПК-2 Способен самостоятель-	3-ОПК-2 Знать современные теоретические, в том чис-
но осваивать и применять со-	ле математические и экспериментальные методы ис-
временные математические ме-	следований для решения профессиональных задач.
тоды исследования анализа и	У-ОПК-2 Уметь самостоятельно осваивать и приме-
обработки данных, компьютер-	нять современные математические методы исследова-
ные программы, средства их	ния анализа и обработки данных, компьютерные про-
разработки, научно-	граммы, средства из разработки, научно-
исследовательскую, измеритель-	исследовательскую, измерительно-аналитическую и
но-аналитическую и технологи-	технологическую аппаратуру (в соответствии с из-
ческую аппаратуру (в соответ-	бранным направлением прикладных математики и фи-
ствии с избранным направлени-	зики).
ем прикладных математики и	В-ОПК-2 Владеть навыками проведения фундамен-
физики)	тальных и прикладных исследований и разработок, ра-
	боты на современной экспериментальной научно-

исследовательской, измерительно-аналитической и технологической аппаратуре

<u>Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:</u>

Задача профессиональной деятельности (ЗПД)	Объект или об- ласть знания	Код и наименова- ние профессио- нальной компе- тенции	Код и наименование индикатора достижения профессиональной компетенции
	научно-исследовател	ьский и инновационі	ный
Проведение научных и аналитических исследований по отдельным разделам темы в рамках предметной области по профилю специализации	Физиология человека на разных уровнях (молекулярном, клеточном, органном, целого организма), медицинская биохимия, математические модели для теоретического и численного исследований явлений и закономерностей в указанных выше областях биофизики	ПК-1 Способен самостоятельно и (или) в составе исследовательской группы разрабатывать, исследовать и применять математические модели для качественного и количественного описания явлений и процессов и (или) разработки новых технических средств	3-ПК-1 Знать основные методы и принципы научных исследований, математического моделирования, основные проблемы профессиональной области, требующие использования современных научных методов исследования для качественного и количественного описания явлений и процессов и (или) разработки новых технических средств. У-ПК-1 Уметь ставить и решать прикладные исследовательские задачи, оценивать результаты исследований; проводить научные и прикладные результаты самостоятельно и в составе научного коллектива В-ПК-1 Владеть навыками выбора и использования математических моделей для научных исследований и (или) разработки новых технических средств самостоятельно и (или) в составе исследовательской группы.

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ*

			Виды учебной работы					
№ п/п	Наименование раздела /темы дисциплины	№ неде- ли	Лекции	Практ. занятия/ семинары	Лаб. работы	CPC	Текущий контроль (форма)*	Макси- мальный балл (см. п. 5.3)
				Семестр Ј	№ 1			,
1.	Название раз- дела							
1.1.	Кинетика био- логических процессов. Ди- намические модели биоло- гических про- цессов.	1	3	6		10		
1.2.	Кинетика ферментативных процессов.	3	2	4		8	УО	
1.3	Уравнения хи- мической ки- нетики.	5	2	4		10	УО	
	Рубежный контроль	6					Контр.	20
2.	Название раз- дела							
2.1.	Внутриклеточная кальциевая сигнализация.	7, 9	3	6		8		
2.2.	Межклеточная кальциевая сигнализация.	11	2	4		8	УО	
2.3	Строение и механика клет- ки.	13	2	4		8	УО	
2.4	Моделирова- ние движения клетки.	15	2	4		8	УО	
	Рубежный контроль	16					Контр.	25
Промежуточная атте- стация			Экзамен				36	0 - 50
	Посещаемость							5
	V	Ітого:						100

^{*}Сокращение наименований форм текущего, рубежного и промежуточного контроля:

УО – устный опрос Контр. – контрольная работа

4.2. Содержание дисциплины, структурированное по разделам (темам)

Лекционный курс

№	Наименование раздела	Содержание
1.	/темы дисциплины Назрание разлела 1 Vnap	нения химической кинетики
1.1.		Кинетика биологических процессов Основные особенности ки-
1.1.	процессов. Динамиче-	нетики биологических процессов. Описание динамики биоло-
	ские модели биологиче-	гических процессов на языке химической кинетики. Математи-
	ских процессов.	ческие модели. Задачи математического моделирования в био-
	_	логии. Общие принципы построения математических моделей
		биологических систем. Понятие адекватности модели реально-
		му объекту. Динамические модели биологических процессов.
		Линейные и нелинейные процессы. Методы качественной тео-
		рии дифференциальных уравнений в анализе динамических
		свойств биологических процессов. Понятие о фазовой плоскости и фазовом портрете системы. Стационарные состояния био-
		логических систем. Множественность стационарных состояний.
		Устойчивость стационарных состояний. Гистерезисные явле-
		ния. Колебательные процессы в биологии. Автоколебательные
		режимы. Предельные циклы и их устойчивость. Примеры.
		Представления о пространственно неоднородных стационарных
		состояниях (диссипативных структурах) и условиях их образо-
		вания.
1.2.	Уравнения химической	Стехиометрическое уравнение реакции. Простые (элементар-
	кинетики.	ные) и сложные химические процессы, механизм реакции. Го-
		могенные и гетерогенные реакции. Замкнутые и открытые си-
		стемы. Скорость химической реакции. Закон действующих
		масс. Константа скорости реакции. Температурная зависимость константы скорости. Закон Аррениуса. Типы элементарных ре-
		акций. Кинетика необратимых реакций первого, второго и тре-
		тьего порядков. Линейные анаморфозы. Обратимая реакция
		первого порядка. Время установления равновесия. Кинетика
		ферментативных процессов. Особенности механизмов фермен-
		тативных реакций. Понятие о физике ферментативного катали-
		за. Кинетика простейших ферментативных реакций. Условия
		реализации стационарности. Уравнение Михаэлиса-Ментен.
		Влияние модификаторов на кинетику ферментативных реакций.
		Общие принципы анализа более сложных ферментативных ре-
		акций. Влияние температуры на скорость реакций в биологиче-
		ских системах. Взаимосвязь кинетических и термодинамических параметров. Роль конформационных свойств биополиме-
		ров.
1.3.	Уравнения типа «реак-	Химическая реакция и диффузия. Эффект "клетки". Диффузи-
	ция-диффузия».	онная и кинетическая области реакции. Диффузионная кон-
	TTV	станта скорости. Коэффициент относительной диффузии, реак-
		ционный радиус. Реакции между ионами. Влияние растворите-
		ля на диффузионную константу. Радиус Онзагера. Метод акти-
		вированного комплекса для жидкофазных реакций.
2.	Название раздела 2. Клето	
2.1.	Внутриклеточная каль-	Основные принципы регуляции активности ферментов и мета-
	циевая сигнализация.	болических процессов. Аллостерия и регуляция метаболитами.
		Понятие о рецепторах, агонистах и антагонистах. Сродство
		агониста к рецептору. Общие механизмы и этапы передачи

	T.0
	внешних сигналов внутрь клетки. Композиция и основные характеристики элементов сигнальных систем — сигнальных каскадов клетки. Рецепторный, мембранный, и цитоплазматический уровни, их общие черты и различия. Понятие о вторичных посредниках, их основные представители и разнообразие способов действия. Формирование сигнальных сетей и механизмов обратной связи. Положительная обратная связь с участием ионов Ca2+. Роль механизмов обратной связи и переадресации сигнала в регуляции его длительности и зависимость клеточного ответа от длительности сигнала. Рецепторы, сопряженные с Gq-белками и активация трисфосфоинозитид-зависимого каскада, приводящего к активации протеинкиназы С и повышению внутриклеточного концентрации Ca2+. Роль митохондрий и их положения относительно других органелл. Роль Ca2+ в регуляции сокращения мышц. Роль ионов кальция в регуляции метаболической гибкости гепатоцита. Роль ионов кальция в регуляции экзоцитоза инсулина бета-клетками поджелудочное железы.
ежклеточная кальцие- я сигнализация.	Контактная функция плазматической мембраны. Контактные и дистантные межклеточные взаимодействия. Контактная функция плазматической мембраны. Классификация и биохимическая организация межклеточных контактов. Характеристика временных и постоянных контактов; контактов простого и сцепляющего типов; адгезионных, замыкающих и проводящих контактов. Синаптическая передача сигнала. Нейромедиаторы и нейромодуляторы. Синтез, хранение, метаболизм, выделение и деградация медиатора. Связывание с рецептором. Современные методы изучения локализации и реализации действия медиаторов. Дистантные взаимодействия. Варианты гуморальной регуляции (эндокринная, паракринная, аутокринная). Реализация внеклеточных сигналов внутри клетки. Эффекторы, вторичные мессенджеры и их мишени (адаптерные молекулы, сигнальные ферменты, конечные мишени). Молекулярные механизмы передачи сигнала пептидными, стероидными и тиреоидными гормонами, катехоламинами.
	· · · · · · · · · · · · · · · · · · ·
роение и механика етки.	Основные типы, молекулярная организация и исполнительные механизмы систем, обеспечивающих движение клетки. Транспортная и сократительная функция цитоскелета. Системы движения, основанные на полимеризации (деполимеризации) и взаимодействии микротрубочек и актиновых нитей. Строение и конформационные перестройки цитоскелета. Динамика адгезивных контактов при движении клетки по субстрату: визуализация с помощью химерных конструкций интегрисвязывающих и флуоресцентных белков. Формирование интегринами «молекулярного замка», обеспечивающего сопряжение протрузионной активности переднего края и подтягивания за счет сокращения в теле клетки. Разнообразие белков, привлекаемых интегринами и интегриновый интерактом. Src и FAK — основные цитозольные тирозинкиназы, привлекаемые интегринами для запуска сигнала внутрь клетки. Динамическая регуляция образования, созревания и разрушения адгезивных контактов с участием Src-, FAK-киназ и малых Rho-ГТФ-аз.
этопиморония вриме	
оделирование движе- я клетки.	Типы моделей. Вязко-упругая модель механики клетки. Влияние трения и внутриклеточной сигнализации. Моделирование клеточной адгезии. Сравнение с экспериментом.
]	роение и механика етки.

Практические/семинарские занятия

No	Наименование раздела /темы дисциплины	Содержание
1.		нения химической кинетики
1.1.	Кинетика биологических	Временная иерархия и принцип "узкого места" в биологических
	процессов. Динамиче-	системах. Управляющие параметры. Быстрые и медленные пе-
	ские модели биологиче-	ременные. Способы математического описания пространствен-
	ских процессов.	но неоднородных систем.
1.2.	Уравнения химической	Связь константы скорости прямой и обратной реакции с кон-
	кинетики.	стантой равновесия. Принцип детального равновесия. Методы
		определения порядка реакции. Определение энергии активации.
1.3.	Уравнения типа «реак-	Сольватация. Влияние растворителя на кинетическую констан-
	ция-диффузия».	ту. Зависимость от диэлектрической проницаемости. Влияние
		ионной силы электролита.
2.	Название раздела 2. Клето	очная сигнализация
2.1.	Внутриклеточная каль-	Концентрационные зависимости связывания гормона с рецеп-
	циевая сигнализация	тором in vitro и биологического эффекта in vivo. Зависимость
		суммарного биологического ответа к агонисту от его концен-
		трации в крови и представленности рецепторов в клетках раз-
		личных тканей. Механизмы регуляции фракции свободных и
		связанных агонистов в системе циркуляции.
2.2.	Межклеточная кальцие-	Рецепторные пути передачи информации. Мембранные рецеп-
	вая сигнализация.	торы и сигнальные молекулы. Управляемые лигандами ионные
		каналы. Рецепторы с собственной активностью. Тирозинкина-
		зы. Рецепторы без собственной активности. Цитокиновые ре-
		цепторы. Рецепторы, переносящие лиганды через мембрану.
		Серпентиновые рецепторы. Рецепторы, освобождающие факто-
2.2		ры транскрипции.
2.3.	Строение и механика	Тубулины, G- и F-актин, миозин, МАР и БАМ и другие белки
	клетки	как элементы "конструктора" для построения цитоскелета.
		Микрофиламенты, микротрубочки, промежуточные филамен-
		ты. Интегрины как рецепторы клеточной адгезии и их лиганды
		– белки внеклеточного матрикса. Строение альфа-бета интегри-
2.4.	Мононирование науче	нов, реализация связи цитоскелета с матриксом. Различные модели клеточной адгезии. Моделирование движе-
∠.4.	Моделирование движе-	ния клетки на различных субстратах. Хемотаксис.
	ния клетки	ния клетки на различных суостратах. лемотаксис.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВА-ЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИС-ЦИПЛИНЫ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

5.1. Паспорт фонда оценочных средств по дисциплине

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Раздел	Темы занятий	Компетенция	Индикаторы освоения	Текущий кон- троль, неделя
		Семестр 1		
	1.1. Кинетика биологи- ческих процессов. Динамические моде-		3-УКЦ-1;У-УКЦ-1; В-УКЦ-1	
D 1	ли биологических процессов	УКЦ-1 УКЦ-2	3-УКЦ-2;У-УКЦ-2; В-УКЦ-2	
Раздел 1	1.2. Уравнения химической кинетики	ОПК-1 ОПК-2	3-ОПК-1; У-ОПК- 1; В-ОПК-1	УО - 3
1.3	1.3. Уравнения типа «ре- акция-диффузия»	ПК-1	3-ОПК-2; У-ОПК- 2; В-ОПК-2 3-ПК-1; У-ПК-1; В- ПК-1	YO - 5
	Рубежный контроль	УКЦ-1 УКЦ-2 ОПК-1 ОПК-2 ПК-1	3-УКЦ-1;У-УКЦ-1; В-УКЦ-1 3-УКЦ-2;У-УКЦ-2; В-УКЦ-2 3-ОПК-1; У-ОПК- 1; В-ОПК-1 3-ОПК-2; У-ОПК- 2; В-ОПК-2 3-ПК-1; У-ПК-1; В- ПК-1	Контр -6
Раздел 2	2.1. Внутриклеточная кальциевая сигнализация 2.2. Межклеточная кальциевая сигнализация	УКЦ-1 УКЦ-2 ОПК-1 ОПК-2	3-УКЦ-1;У-УКЦ-1; В-УКЦ-1 3-УКЦ-2;У-УКЦ-2; В-УКЦ-2 3-ОПК-1; У-ОПК- 1; В-ОПК-1	УО – 11
ка клетки 2.4. Моделирован	2.3. Строение и механи- ка клетки 2.4. Моделирование движения клетки	ПК-1	3-ОПК-2; У-ОПК- 2; В-ОПК-2 3-ПК-1; У-ПК-1; В- ПК-1	YO – 13 YO – 15

Рубежный контроль	УКЦ-1 УКЦ-2 ОПК-1 ОПК-2 ПК-1	3-УКЦ-1;У-УКЦ-1; B-УКЦ-1 3-УКЦ-2;У-УКЦ-2; B-УКЦ-2 3-ОПК-1; У-ОПК- 1; B-ОПК-1 3-ОПК-2; У-ОПК- 2; B-ОПК-2 3-ПК-1; У-ПК-1; B- ПК-1	Контр – 16
Промежуточная аттестация	УКЦ-1 УКЦ-2 ОПК-1 ОПК-2 ПК-1	3-УКЦ-1;У-УКЦ-1; B-УКЦ-1 3-УКЦ-2;У-УКЦ-2; B-УКЦ-2 3-ОПК-1; У-ОПК- 1; B-ОПК-1 3-ОПК-2; У-ОПК- 2; B-ОПК-2 3-ПК-1; У-ПК-1; B- ПК-1	Зачет

5.2. Примерные контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

5.2.1. Оценочные средства для текущего контроля (УО)

- 1. Стехиометрическое уравнение реакции.
- 2. Гомогенные и гетерогенные реакции.
- 3. Замкнутые и открытые системы.
- 4. Скорость химической реакции.
- 5. Закон действующих масс.
- 6. Константа скорости реакции.
- 7. Температурная зависимость константы скорости.
- 8. Закон Аррениуса.
- 9. Уравнение Михаэлиса-Ментен.
- 10. Диффузионная константа скорости.
- 11. Коэффициент относительной диффузии, реакционный радиус.
- 12. Реакции между ионами.
- 13. Влияние растворителя на диффузионную константу.
- 14. Радиус Онзагера.
- 15. Основные принципы регуляции активности ферментов и метаболических процессов.
- 16. Общие механизмы и этапы передачи внешних сигналов внутрь клетки.
- 17. Положительная обратная связь с участием ионов Са2+.
- 18. Роль митохондрий и их положения относительно других органелл.
- 19. Роль Са2+ в регуляции сокращения мышц.
- 20. Классификация и биохимическая организация межклеточных контактов.
- 21. Синаптическая передача сигнала.
- 22. Эффекторы, вторичные мессенджеры и их мишени.
- 23. Транспортная и сократительная функция цитоскелета.
- 24. Строение и конформационные перестройки цитоскелета.

- 25. Вязко-упругая модель механики клетки.
- 26. Моделирование клеточной адгезии.

5.2.2. Оценочные средства для рубежного контроля (вопросы для письменной контрольной работы)

- 1. Стехиометрическое уравнение реакции. Простые (элементарные) и сложные химические процессы, механизм реакции. Гомогенные и гетерогенные реакции. Замкнутые и открытые системы. Скорость химической реакции. Закон действующих масс. Константа скорости реакции
- 2. Температурная зависимость константы скорости. Закон Аррениуса. Типы элементарных реакций. Кинетика необратимых реакций первого, второго и третьего порядков.
- 3. Кинетика простейших ферментативных реакций. Условия реализации стационарности. Уравнение Михаэлиса-Ментен. Влияние модификаторов на кинетику ферментативных реакций.
- 4. Химическая реакция и диффузия. Эффект "клетки". Диффузионная и кинетическая области реакции. Диффузионная константа скорости. Коэффициент относительной диффузии, реакционный радиус. Реакции между ионами.
- 5. Влияние растворителя на диффузионную константу. Радиус Онзагера. Метод активированного комплекса для жидкофазных реакций.
- 6. Основные принципы регуляции активности ферментов и метаболических процессов. Аллостерия и регуляция метаболитами. Понятие о рецепторах, агонистах и антагонистах. Сродство агониста к рецептору. Общие механизмы и этапы передачи внешних сигналов внутрь клетки.
- 7. Понятие о вторичных посредниках, их основные представители и разнообразие способов действия. Формирование сигнальных сетей и механизмов обратной связи. Положительная обратная связь с участием ионов Ca2+.
- 8. Роль Ca2+ в регуляции сокращения мышц. Роль ионов кальция в регуляции метаболической гибкости гепатоцита. Роль ионов кальция в регуляции экзоцитоза инсулина бетаклетками поджелудочное железы.
- 9. Классификация и биохимическая организация межклеточных контактов. Характеристика временных и постоянных контактов; контактов простого и сцепляющего типов; адгезионных, замыкающих и проводящих контактов.
- 10. Синаптическая передача сигнала. Нейромедиаторы и нейромодуляторы. Синтез, хранение, метаболизм, выделение и деградация медиатора.
- 11. Основные типы, молекулярная организация и исполнительные механизмы систем, обеспечивающих движение клетки. Транспортная и сократительная функция цитоскелета.
- 12. Системы движения, основанные на полимеризации (деполимеризации) и взаимодействии микротрубочек и актиновых нитей. Строение и конформационные перестройки цитоскелета.

5.2.3. Оценочные средства для промежуточной аттестации (примерные вопросы к зачету)

- 1. Стехиометрическое уравнение реакции. Простые (элементарные) и сложные химические процессы, механизм реакции. Гомогенные и гетерогенные реакции. Замкнутые и открытые системы. Скорость химической реакции. Закон действующих масс. Константа скорости реакции.
- 2. Температурная зависимость константы скорости. Закон Аррениуса. Типы элементарных реакций. Кинетика необратимых реакций первого, второго и третьего порядков. Линейные анаморфозы. Обратимая реакция первого порядка. Время установления равновесия.
- 3. Кинетика ферментативных процессов. Особенности механизмов ферментативных реакций. Понятие о физике ферментативного катализа. Кинетика простейших ферментативных реакций. Условия реализации стационарности. Уравнение Михаэлиса-Ментен. Влияние модификаторов на кинетику ферментативных реакций.
- 4. Химическая реакция и диффузия. Эффект "клетки". Диффузионная и кинетическая области реакции. Диффузионная константа скорости. Коэффициент относительной диффузии, ре-

- акционный радиус. Реакции между ионами. Влияние растворителя на диффузионную константу. Радиус Онзагера. Метод активированного комплекса для жидкофазных реакций.
- 5. Основные принципы регуляции активности ферментов и метаболических процессов. Аллостерия и регуляция метаболитами. Понятие о рецепторах, агонистах и антагонистах. Сродство агониста к рецептору. Общие механизмы и этапы передачи внешних сигналов внутры клетки
- 6. Композиция и основные характеристики элементов сигнальных систем сигнальных каскадов клетки. Рецепторный, мембранный, и цитоплазматический уровни, их общие черты и различия. Понятие о вторичных посредниках, их основные представители и разнообразие способов действия.
- 7. Формирование сигнальных сетей и механизмов обратной связи. Положительная обратная связь с участием ионов Ca2+. Роль механизмов обратной связи и переадресации сигнала в регуляции его длительности и зависимость клеточного ответа от длительности сигнала.
- 8. Рецепторы, сопряженные с Gq-белками и активация трисфосфоинозитид-зависимого каскада, приводящего к активации протеинкиназы С и повышению внутриклеточного концентрации Ca2+. Роль митохондрий и их положения относительно других органелл.
- 9. Роль Ca2+ в регуляции сокращения мышц. Роль ионов кальция в регуляции метаболической гибкости гепатоцита. Роль ионов кальция в регуляции экзоцитоза инсулина бетаклетками поджелудочное железы.
- 10. Контактная функция плазматической мембраны. Контактные и дистантные межклеточные взаимодействия. Контактная функция плазматической мембраны. Классификация и биохимическая организация межклеточных контактов. Характеристика временных и постоянных контактов; контактов простого и сцепляющего типов; адгезионных, замыкающих и проводящих контактов.
- 11. Синаптическая передача сигнала. Нейромедиаторы и нейромодуляторы. Синтез, хранение, метаболизм, выделение и деградация медиатора. Связывание с рецептором. Современные методы изучения локализации и реализации действия медиаторов. Дистантные взаимодействия.
- 12. Варианты гуморальной регуляции (эндокринная, паракринная, аутокринная). Реализация внеклеточных сигналов внутри клетки. Эффекторы, вторичные мессенджеры и их мишени (адаптерные молекулы, сигнальные ферменты, конечные мишени). Молекулярные механизмы передачи сигнала пептидными, стероидными и тиреоидными гормонами, катехоламинами.
- 13. Основные типы, молекулярная организация и исполнительные механизмы систем, обеспечивающих движение клетки. Транспортная и сократительная функция цитоскелета. Системы движения, основанные на полимеризации (деполимеризации) и взаимодействии микротрубочек и актиновых нитей. Строение и конформационные перестройки цитоскелета.
- 14. Динамика адгезивных контактов при движении клетки по субстрату: визуализация с помощью химерных конструкций интегри-связывающих и флуоресцентных белков. Формирование интегринами «молекулярного замка», обеспечивающего сопряжение протрузионной активности переднего края и подтягивания за счет сокращения в теле клетки.
- 15. Разнообразие белков, привлекаемых интегринами и интегриновый интерактом. Src и FAK основные цитозольные тирозинкиназы, привлекаемые интегринами для запуска сигнала внутрь клетки. Динамическая регуляция образования, созревания и разрушения адгезивных контактов с участием Src-, FAK-киназ и малых Rho-ГТФ-аз.
- 16. Вязко-упругая модель механики клетки. Влияние трения и внутриклеточной сигнализации. Моделирование клеточной адгезии. Сравнение с экспериментом.

5.3. Шкалы оценки образовательных достижений

Рейтинговая оценка знаний является интегральным показателем качества теоретических и практических знаний и навыков студентов по дисциплине и складывается из оценок, полученных в ходе текущего контроля и промежуточной аттестации.

Результаты текущего контроля и промежуточной аттестации подводятся по шкале балльно-рейтинговой системы.

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балль-	Оценка	Требования к уровню освоению учебной
	ной шкале	ECTS	дисциплины
			Оценка «отлично» выставляется студенту,
			если он глубоко и прочно усвоил про-
			граммный материал, исчерпывающе, по-
90-100	5 – «отлично»	A	следовательно, четко и логически стройно
			его излагает, умеет тесно увязывать тео-
			рию с практикой, использует в ответе ма-
			териал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		C	если он твёрдо знает материал, грамотно и
	4 – « <i>xopowo</i> »		по существу излагает его, не допуская су-
70-74		D	щественных неточностей в ответе на во-
		שו	прос.
65-69			Оценка «удовлетворительно» выставляет-
			ся студенту, если он имеет знания только
	3 – «удовлетворитель-		основного материала, но не усвоил его
60-64	но»	E	деталей, допускает неточности, недоста-
00-04	no"	L	точно правильные формулировки, нару-
			шения логической последовательности в
			изложении программного материала.
			Оценка «неудовлетворительно» выставля-
			ется студенту, который не знает значи-
			тельной части программного материала,
Ниже 60	2 – «неудовлетвори-	F	допускает существенные ошибки. Как
	тельно»	Г	правило, оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без дополнительных
			занятий по соответствующей дисциплине.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕ-НИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ЛИТЕРАТУРА:

- 1. Плутахин Г.А., Кощаев А.Г. Биофизика: учеб. пособие [для студ. вузов]. Изд. 2-е, перераб. и доп. СПб., Лань, 2012. 240 с.
- 2. Волькенштейн М.В. Биофизика: учеб.пособие СПб., Лань, 2012. 608с.
- 3. Васильев А. А. Медицинская и биологическая физика. Тестовые задания. 2-е изд., испр. и доп. Учебное пособие для вузов. М.: Юрайт, 2019. 189 с.
- 4. Васильев А. А. Медицинская и биологическая физика. Лабораторный практикум: учебное пособие для вузов / А. А. Васильев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 313 с.
- 5. Альбертс Б., Джонсон А., Льюис Дж., Рэфф М., Робертс К., Уолтер П. "Основы молекулярной биологии клетки" из-во Лаборатория знаний, 2018. ISBN 978-5-00101-087-6.

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При чтении лекционного материала используется электронное сопровождение курса: справочно-иллюстративный материал воспроизводится и озвучивается в аудитории с использованием проектора и переносного компьютера в реальном времени.

Рабочая программа дисциплины составлена в соответствии с ОС НИЯУ МИФИ (ФГОС) и учебным планом основной образовательной программы (программ).

Автор(ы): Докукина И.В., к. ф.-м.н., доцент кафедры высшей математики

Рецензент(ы):