МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Саровский физико-технический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (СарФТИ НИЯУ МИФИ)

ФИЗИКО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра «Теоретической и экспериментальной механики»

	Лекон ФТФ	, член корр. РАН, д.ф-м.і
	Ackan WIW	А.К. Чернышев
	« <u></u> »_	2022
	AMERICA THOM	
РАБОЧАЯ ПРОГРАММА	х учебной дисці	ШЛИНЫ
Эксперимент	альная механика	

УТВЕРЖДАЮ

Направление подготовки (специальность)	15.03.03 Прикладная механика
Наименование образовательной программы	Динамика и прочность машин, приборов и аппаратуры
Квалификация (степень) выпускника	бакалавр
Форма обучения	очная
Программа одобрена на заседании кафедры	Зав. кафедрой ТиЭМ, д.т.н., доцент
протокол № от 2023 г.	А.Л. Михайлов
	« » 2023 г.

Программа переутверждена на 202/202учебный год с изм	менениями в сос	ответствии с
семестровыми учебными планами академических групп ФИТЭ,	ФТФ на 202	/202
учебный год.		
Заведующий кафедрой ТиЭМ, д.т.н., доцент	А.Л. Мих	хайлов
Программа переутверждена на 202/202учебный год с изм	менениями в сос	ответствии с
семестровыми учебными планами академических групп ФИТЭ,	ФТФ на 202	/202
учебный год.		
Заведующий кафедрой ТиЭМ, д.т.н., доцент	А.Л. Мих	хайлов
Программа переутверждена на 202/202учебный год с изм	менениями в сос	ответствии с
семестровыми учебными планами академических групп ФИТЭ,	ФТФ на 202_	/202
учебный год.		
Заведующий кафедрой ТиЭМ, д.т.н., доцент	А.Л. Мих	хайлов
Программа переутверждена на 202/202учебный год с изм		
семестровыми учебными планами академических групп ФИТЭ,	ФТФ на 202	/202
учебный год.		
Заведующий кафедрой ТиЭМ, д.т.н., доцент	А.Л. Мих	хайлов

Семестр	В форме практической подготовки	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС, час.	КР/ КП	Форма(ы) контроля, экз./зач./3сО/	ерак
7	16	3	108	16	16	-	49	-	Э	8
итого	16	3	108	16	16	-	49	-	27	8

АННОТАЦИЯ

Дисциплина «Экспериментальная механика» обеспечивает не только нормативнометодическую базу освоения обучающимися общепрофессиональных и профессиональных компетенций в соответствии с требованиями ОС ВО по направлению подготовки 15.03.03 «Прикладная механика», с квалификацией выпускника бакалавр, но и высокую профессиональную конкурентоспособность выпускников и их востребованность для решения актуальных задач и потребностей регионального и Всероссийского рынка труда, с учетом перспектив его развития.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины «Экспериментальная механика» являются приобретение бакалавром знания, умения и навыков, обеспечивающих достижение целей основной образовательной программы «Прикладная механика»

Дисциплина нацелена на подготовку бакалавров:

- ✓ способных к проведению научных экспериментов, выполнению теоретических и расчетно-экспериментальных работ, решению задач прикладной механики задач динамики, прочности, устойчивости, долговечности, ресурса, живучести, надежности и безопасности конструкций, композитных структур, сооружений, установок, агрегатов, оборудования, приборов и аппаратуры и их элементов;
- ✓ готовых к применению информационных технологий, современных систем компьютерной математики, технологий конечно-элементного анализа, наукоемких компьютерных технологий программных систем компьютерного проектирования систем автоматизированного проектирования, программных систем инженерного анализа и компьютерного инжиниринга;
- ✓ способных к самообучению и постоянному профессиональному самосовершенствованию;
- ✓ готовых к управлению проектами, маркетингом; организации работы научных и производственных подразделений, занимающихся разработкой и проектированием новой техники и технологий.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Индекс дисциплины: Б1.О.23

Дисциплина относится к профессиональному циклу дисциплин. Для освоения дисциплины от студентов требуется знания по дисциплинам естественнонаучного и математического цикла «Физика» и «Математика. Студенты» должны знать основы высшей математики, физики, теоретической механики, сопротивления материалов, инженерной и компьютерной графики, информационных технологий, экологии.

Необходимо также знать основы автоматизированного проектирования, аналитическую динамику и теорию колебаний, теорию упругости, основы механики жидкости и газа, материаловедение, вычислительную механику, детали машин и основы конструирования.

Параллельное изучение дисциплин обеспечит лучшее усвоение материала, в том числе общего раздела «Механические свойства конструкционных материалов».

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Ожидается, что в результате освоения дисциплины студент приобретет следующие компетенции:

Общепрофессиональные компетенции (ОПК)

Код и наименование компетенции	Код и наименование индикатора достижения компетенции				
ОПК-11 Способен выявлять	3-ОПК-11 Знать естественно-научную сущность проблем,				
естественнонаучную сущность	возникающих в ходе профессиональной деятельности				
проблем, возникающих в ходе	У-ОПК-11 Уметь привлекать для решения естественно-				
профессиональной деятельности,	научных проблем, возникающих в ходе профессиональной				
привлекать для их решения	деятельности, физико-математический аппарат и				
физико-математический аппарат и	современные компьютерные технологии.				
современные компьютерные	В-ОПК-11 Владеть физико-математическим аппаратом и				
технологии.	современными компьютерными технологиями для				
	выявления естественнонаучных проблем, возникающих в				
ходе профессиональной деятельности					
ОПК-12 Способен учитывать	3-ОПК-12 Знать современные тенденции развития техники				
современные тенденции развития	и технологий в своей профессиональной деятельности.				
техники и технологий в своей	У-ОПК-12 Уметь учитывать современные тенденции				
профессиональной деятельности.	развития техники и технологий в своей профессиональной				
	деятельности.				
	В-ОПК-12 современной техникой и технологией в своей				
	профессиональной деятельности.				

Профессиональные компетенции (ПК)

в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции
Тип зада	чи профессиональной	деятельности: научно-и	сследовательский
участие в составе научно- исследовательской группы в в научно- исследовательских работах в области прикладной механики	Физико- механические процессы и явления, машины, конструкции, приборы и аппаратура и другие объекты современной техники различных подразделений РФЯЦ-ВНИИЭФ, которые для своего изучения и решения требуют разработки и применения экспериментальных методов	ПК-1 Способен к проведению работ по обработке и анализу научно-технической информации и результатов исследований Основание: Профессиональный стандарт «40.011. Специалист по научно-исследовательским и опытно-конструкторским разработкам»	З-ПК-1 Знать методы анализа научных данных У-ПК-1 Уметь оформлять результаты научно-исследовательских и опытно-конструкторских работ В-ПК-1 Владеть проведением анализа научных данных, результатов экспериментов и наблюдений; осуществлением теоретического обобщения научных данных, результатов экспериментов и наблюдений
	исследования, математических и компьютерных моделей, основанных на законах механики.	ПК-2 Способен к осуществлению выполнения экспериментов и оформлению результатов исследований и разработок Основание: Профессиональный стандарт «40.011. Специалист по научно исследовательским и опытно-конструкторским разработкам»	3-ПК-2 Знать цели и задачи проводимых исследований разработок; методы проведения экспериментов и наблюдений, обобщения и обработки информации У-ПК-2 Уметь оформлять результаты научно-исследовательских и опытно-конструкторских работ; применять методы проведения экспериментов В-ПК-2 Владеть проведением наблюдений и измерений, составление их описаний и формулировка выводов; составление отчетов (разделов отчетов) по теме или по результатам проведенных экспериментов

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3 кредита, 108 часов.

№ п/п	Раздел учебной дисциплины	ІИ	Виды учебной деятельности, включая самостоятельную работу студентов и			Текущий контроль успеваемости	раздела (неделя,	Максимальны й балл за
i		Недели		трудоемкость (в часах)		(неделя, форма) форма)	форма)	раздел *
i		He,	Лекции	Практ. занятия/	Лаб. работы			
				семинары				
			16	16				
<u> </u>				7 семестр)			
1	Строение и свойства материалов.	2	1	4		2, опрос	2, контрольная работа	5
2	Механические свойства материалов при статических и динамических нагрузка. Методы изучения.	2	4	2		4, самостоятельная работа	4, контрольная работа	10
3	Свойства ударных волн и волн разрежения.	2	2			5, опрос	6, коллоквиум	10
4	Ударные адиабаты. Методы регистрации.	2	2	4		8, опрос	8, контрольная работа	10
5	Описание экспериментальных данных.	1	1	2		9, самостоятельная работа	9, контрольная работа	10
6	Двукратная сжимаемость веществ.	2	1			10, опрос	11, контрольная работа	10
7	Изэнтропическое расширение веществ после ударного сжатия.	2	2			13, опрос	13, коллоквиум	10
8	Сжатие пористых веществ.	2	1			15, самостоятельная работа	15, контрольная работа	10
9	Экспериментальное определение параметра Грюнайзена.	1	1			16, опрос	16, контрольная работа	10
10	Определение скорости звука в ударно сжатых материалах.	2	1	4		18, самостоятельная работа	18, контрольная работа	15
	Итого засеместр							
	Экзамен							
i	СРС – 49час							100

4.1. Содержание дисциплины.

Проводятся лабораторные работы, посвященные изучению методов измерения скорости полета лайнера, скорости звука и профиля давления в ударно сжатых материалах, изучению характеристик прочности и пластичности материалов.

- Измерение скорости полета лайнера лазерным интерферометром (лабораторная работа №1).
 Цель работы: знакомство с лазерным интерферометром, легкогазовой пушкой, принципом их работы и экспериментальная регистрация скорости полета лайнера, разогнанного легкогазовой пушкой.
- 2. Определение профиля давления с помощью ПВДФ-датчика давления (лабораторная работа №2).

Цель работы: знакомство с ПВДФ-датчиком давления, принципом его работы и экспериментальная регистрация профиля давления в ударно сжатом материале.

- 3. Определение скорости звука в ударно сжатом материале (лабораторная работа №3). *Цель работы*: знакомство с экспериментальной установкой, монтаж экспериментального узла и измерение скорости звука.
- 4. Определение диаграммы деформирования σ-ε статического сжатия и растяжения металлов на испытательной машине Shimadzu.

Цель работы: изучение характеристик прочности и пластичности материалов при статическом нагружении, обучение обработке и анализу результатов.

5. Определение диаграммы деформирования σ-є динамического сжатия и растяжения металлов по методу составного стержня Гопкинсона (Методу Кольского) на пневматической установке ИФВ.

Цель работы: изучение характеристик прочности и пластичности материалов при динамическом нагружении, обучение обработке и анализу результатов.

6. Определение динамической трещиностойкости металлов по модифицированному методу составного стержня Гопкинсона на пневматической установке ИФВ.

Цель работы: изучение сопротивления развитию трещин в материалах при динамическом нагружении, обучение обработке и анализу результатов.

Предусмотрены рефераты по следующим темам:

- Механические свойства материалов при статических и динамических нагрузка.
- Ударные адиабаты. Методы регистрации.
- Сжатие пористых веществ.
- Определение скорости звука в ударно сжатых материалах.

4. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В рамках учебной программы запланировано лекционные занятия с использованием различных видов демонстрационной подачи учебного материала (компьютер, типичные образцы натурных размеров, кино- видео-материалы и др.). Предусмотрен разбор конкретных постановок экспериментов с постадийным анализом процесса и обсуждением конечного результата. Запланирован психологический тренинг с целью безопасного обращения с ВВ, токсичными и радиоактивными материалами. Предусмотрены встречи с представителями российских и зарубежных компаний, участие в Харитоновских Чтениях и других конференциях.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ.

Самостоятельная работа студентов (курсовая работа)

Тема курсовой работы конкретного студента определяется темой его дипломной работы и выполняется под руководством преподавателя.

Формы контроля: <u>промежуточный</u> -2 контрольные работы -8 семестр, 2 контрольные работы 9 семестр; курсовая работа 9 семестр, <u>итоговый</u> -3 ачет -8 семестр, экзамен -9 семестр. Контрольные вопросы

- 1. Понятие «кристаллическая решетка», типы решеток. Связь типа решеток со свойствами материалов.
- 2. Дефекты кристаллов: точечные, линейные, объемные.
- 3. Реологические модели поведения материалов при деформировании и разрушении.
- 4. σ-ε диаграммы и способы их получения.
- 5. Метод Кольского для исследования динамических свойств материалов.
- 6. Основные уравнения для волн разрежения.
- 7. Метод откола.
- 8. Метод торможения.
- 9. Метод отражения.
- 10. Метод преград
- 11. Определение двукратной ударной сжимаемости манганиновыми датчиками давления
- 12. Определение двукратной ударной сжимаемости магнитоэлектрическими датчиками.
- 13. Изэнтропическое расширение веществ после ударного сжатия.
- 14. Метод преград.
- 15. Сжатие пористых веществ.

- 16. Экспериментальное определение параметра Грюнайзена.
- 17. Определение скорости звука в ударно сжатых материалах.
- 18. Метод боковой разгрузки.
- 19 Метод догоняющей разгрузки.
- 20 Техника эксперимента.
- 21. Оптический метод регистрации скоростей волн разрежения.
- 22. Техника эксперимента.
- 23. Измерение скорости звука с помощью манганиновых датчиков давления.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

а) основная литература:

- 1. Методы исследования свойств материалов при интенсивных динамических нагрузках: Монография/ Под общ.ред.М.В.Жерноклетова.-2-е изд.доп.и испр.-Саров.ФГУП «РФЯЦ-ВНИИЭФ».2005.-428с.
- 2. Глушак Б.Л. Начала физики взрыва. Учебное пособие. Саров: ВНИИЭФ, 2011.- 308 с.
- 3. Глушак Б.Л. Физика взрыва: Сборник задач и упражнений с решениями. Саров РФЯЦ-ВНИИЭФ, 2008 194c
- 4 В.А.Огородников, В.А.Пушков, О.А.Тюпанова Основы физики прочности и меха-ника разрушения, Саров, РФЯЦ-ВНИИЭФ.2012
- 5.Методы исследования ударно-волновых и динамических свойств материалов : учебное пособие по курсу Экспериментальная механика.-Саров ФГУП РФЯЦ-ВНИИЭФ, 2014 -161с. Ил.
- 6. Физическое материаловедение: учебник для вузов: в 7 т. / Под общ. ред. Б.А. Калина. 2-е изд., перераб. М.: НИЯУ МИФИ, 2012. Т. 3: Методы исследования структурно-фазового состояния материалов / Н.В. Волков, В.И. Скрытный, В.П. Филиппов, В.Н. Яльцев. 2012. 800 с.: ил.
- 7. Физическое материаловедение: учебник для вузов: в 7 т. / Под общ. ред. Б.А. Калина. 2-е изд., перераб. М.: НИЯУ МИФИ, 2012. Т. 6: Конструкционные материалы ядерной техники / Б.А. Калин, П.А. Платонов, Ю.В. Тузов и др. 2012. 736 с.: ил.
- 8. Физическое материаловедение: учебник для вузов: в 7 т. / Под общ. ред. Б.А. Калина. 2-е изд., перераб. М.: НИЯУ МИФИ, 2012. Т. 2: Основы материаловедения / Г.Н. Елманов, Б.А. Калин, С.А. Кохтев и др. 2012. 604 с.: ил.
- 9. Огородников В.А. Вязкость и ее роль в динамических процессах: монография. Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2012. 239 с.: ил.

б) дополнительная литература:

- 1. Зукас Дж.А., Николас Т., Свифт Х.Ф., Грещук Л.Б., Курран Д.Р. Динамика удара. Пер. с англ., М.: Мир, 1985.
- 2. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М. Госиздат. физ.мат. литературы. 1963, 632 с.
- 3. Альтшулер Л.В, М.Н.Павловский. Магнитоэлектрический метод определения плотности за фронтом сталкивающихся ударных волн. ПМТФ, 1971, №2, стр110-114.
- 4. Мак-Куин, Хопсон, Фритц. Оптический метод измерения скоростей волн разрежения при очень высоких давлениях. Приборы для научных исследований 1982,№2, стр. 123-130.
- 5. Кулешова Л.В., Павловский М.Н. Динамическая сжимаемость, электропроводность и скорость звука за фронтом ударной волны в капролоне. ПМТФ, 1977, №5, стр122-126.
- 6. Павловский М.Н. Измерение скорости звука в ударно сжатом кварците, доломите, ангидрите, хлористом натрии, парафине, плексигласе, полиэтилене и фторопласте 4. ПМТФ, 1976, №5, стр136-139.
- 7. Альтшулер Л.В., Кормер С.Б., Бражник М.И., Владимиров Л.А., Сперанская М.П., Фунтиков А.И. Изэнтропическая сжимаемость алюминия, меди, свинца и железа при высоких давлениях. ЖЭТФ, 1960, Т.38, вып.4, с. 1061-1073.
- **в) программное обеспечение и Интернет-ресурсы** на сайтах конференций «Shock Wave in Condensed Matter», «DYMAT», «Харитоновские Научные Чтения», «Забабахинские Научные Чтения» и др..

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Аудитории СарФТИ, лабораторное оборудование кафедры ТиЭМ ФТФ СарФТИ и уникальные установки ИФВ РФЯЦ-ВНИИЭФ.

Программа составлена в соответствии с требованиями ОС ВО НИЯУ МИФИ к обязательному минимуму содержания основной образовательной программы по направлению 15.03.03 Прикладная механика.

Программу составил: профессор кафедры ТиЭМ, д.т.н., доцент В.А. Пушков

Рецензент: заведующий кафедрой ТиЭМ, д.т.н., доцент А.Л. Михайлов